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Abstract. Automatic recognition of multiple musical instruments in
polyphonic and polytimbral music is a difficult task, but often attempted
to perform by MIR researchers recently. In papers published so far, the
proposed systems were validated mainly on audio data obtained through
mixing of isolated sounds of musical instruments. This paper tests recog-
nition of instruments in real recordings, using a recognition system which
has multilabel and hierarchical structure. Random forest classifiers were
applied to build the system. Evaluation of our model was performed on
audio recordings of classical music. The obtained results are shown and
discussed in the paper.
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1 Introduction

Music Information Retrieval (MIR) gains increasing interest last years [24]. MIR
is multi-disciplinary research on retrieving information from music, involving ef-
forts of numerous researchers – scientists from traditional, music and digital
libraries, information science, computer science, law, business, engineering, mu-
sicology, cognitive psychology and education [4], [33]. Topics covered in MIR
research include [33]: auditory scene analysis, aiming at the recognition of e.g.
outside and inside environments, like streets, restaurants, offices, homes, cars etc.
[23]; music genre categorization – an automatic classification of music into vari-
ous genres [7], [20]; rhythm and tempo extraction [5]; pitch tracking for query-
by-humming systems that allows automatic searching of melodic databases using
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sung queries [1]; and many other topics. Research groups design various intel-
ligent MIR systems and frameworks for research, allowing extensive works on
audio data, see e.g. [20], [29].

Huge repositories of audio recordings available from the Internet and private
sets offer plethora of options for potential listeners. The listeners might be inter-
ested in finding particular titles, but they can also wish to find pieces they are
unable to name. For example, the user might be in mood to listen to something
joyful, romantic, or nostalgic; he or she may want to find a tune sung to the
computer’s microphone; also, the user might be in mood to listen to jazz with
solo trumpet, or classic music with sweet violin sound. More advanced person
(a musician) might need scores for the piece of music found in the Internet, to
play it by himself or herself.

All these issues are of interest for researchers working in MIR domain, since
meta-information enclosed in audio files lacks such data – usually recordings are
labeled by title and performer, maybe category and playing time. However, au-
tomatic categorization of music pieces is still one of more often performed tasks,
since the user may need more information than it is already provided, i.e. more
detailed or different categorization. Automatic extraction of melody or possibly
the full score is another aim of MIR. Pitch-tracking techniques yield quite good
results for monophonic data, but extraction of polyphonic data is much more
complicated. When multiple instruments play, information about timbre may
help to separate melodic lines for automatic transcription of music [15] (spatial
information might also be used here). Automatic recognition of timbre, i.e. of
instrument, playing in polyphonic and polytimbral (multi-instrumental) audio
recordings, is our goal in the investigations presented in this paper.

One of the main problems when working with audio recordings is labeling
of the data, since without properly labeled data, testing is impossible. It is
difficult to recognize all notes played by all instruments in each recording, and
if numerous instruments are playing, this task is becoming infeasible. Even if a
score is available for a given piece of music, still, the real performance actually
differs from the score because of human interpretation, imperfections of tempo,
minor mistakes, and so on. Soft and short notes pose further difficulties, since
they might not be heard, and grace notes leave some freedom to the performer
- therefore, consecutive onsets may not correspond to consecutive notes in the
score. As a result, some notes can be omitted. The problem of score following is
addressed in [28].

1.1 Automatic Identification of Musical Instruments in Sound
Recordings

The research on automatic identification of instruments in audio data is not a
new topic; it started years ago, at first on isolated monophonic (monotimbral)
sounds. Classification techniques applied quite successfully for this purpose by
many researchers include k-nearest neighbors, artificial neural networks, rough-
set based classifiers, support vector machines (SVM) – a survey of this research
is presented in [9]. Next, automatic recognition of instruments in audio data
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was performed on polyphonic polytimbral data, see e.g. [3], [12], [13], [14], [19],
[30], [32], [35], also including investigations on separation of the sounds from the
audio sources (see e.g. [8]).

The comparison of results of the research on automatic recognition of instru-
ments in audio data is not so straightforward, because various scientists utilized
different data sets: of different number of classes (instruments and/or articula-
tion), different number of objects/sounds in each class, and basically different
feature sets, so the results are quite difficult to compare. Obviously, the less
classes (instruments) to recognize, the higher recognition rate was achieved, and
identification in monophonic recordings, especially for isolated sounds, is easier
than in polyphonic polytimbral environment. The recognition of instruments in
monophonic recordings can reach 100% for a small number of classes, more than
90% if the instrument or articulation family is identified, or about 70% or less for
recognition of an instrument when there are more classes to recognize. The iden-
tification of instruments in polytimbral environment is usually lower, especially
for lower levels of the target sounds – even below 50% for same-pitch sounds
and if more than one instrument is to be identified in a chord; more details can
be found in the papers describing our previous work [16], [31]. However, this re-
search was performed on sound mixes (created by automatic mixing of isolated
sounds), mainly to make proper labeling of data easier.

2 Audio Data

In our previous research [17], we performed experiments using isolated sounds
of musical instruments and mixes calculated from these sounds, with one of
the sounds being of higher level than the others in the mix, so our goal was
to recognize the dominating instrument in the mix. The obtained results for 14
instruments and one octave shown low classification error, depending on the level
of sounds added to the main sound in the mix - the highest error was 10% for the
level of accompanying sound equal to 50% of the level of the main sound. These
results were obtained for random forest classifiers, thus proving usefulness of this
methodology for the purpose of the recognition of the dominating instrument in
polytimbral data, at least in case of mixes. Therefore, we applied the random
forest technique for the recognition of plural (2–5) instruments in artificial mixes
[16]. In this case we obtained lower accuracy, also depending of the level of the
sounds used, and varying between 80% and 83% in total, and between 74% and
87% for individual instruments; some instruments were easier to recognize, and
some were more difficult.

The ultimate goal of such work is to recognize instruments (as many as
possible) in real audio recordings. This is why we decided to perform experiments
on the recognition of instruments with tests on real polyphonic recordings as well.

2.1 Parameterization

Since audio data represent sequences of amplitude values of the recorded sound
wave, such data are not really suitable for direct classification, and parameter-
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ization is performed as a preprocessing. An interesting example of a framework
for modular sound parameterization and classification is given in [20], where col-
laborative scheme is used for feature extraction from distributed data sets, and
further for audio data classification in a peer-to-peer setting.

The method of parameterization influences final classification results, and
many parameterization techniques have been applied so far in research on au-
tomatic timbre classification. Parameterization is usually based on outcomes of
sound analysis, such us Fourier transform, wavelet transform, or time-domain
based description of sound amplitude or spectrum. There is no standard set
of parameters, but low-level audio descriptors from the MPEG-7 standard of
multimedia content description [11] are quite often used as a basis of musical
instrument recognition. Since we have already performed similar research, we
decided to use MPEG-7 based sound parameters, as well as additional ones.

In the experiments described in this paper, we used 2 sets of parameters:
average values of sound parameters calculated through the entire sound (being
a single sound or a chord), and temporal parameters, describing evolution of the
same parameters in time. The following parameters were used for this purpose
[35]:

– MPEG-7 audio descriptors [11], [31]:

• AudioSpectrumCentroid - power weighted average of the frequency bins
in the power spectrum of all the frames in a sound segment;

• AudioSpectrumSpread - a RMS value of the deviation of the Log fre-
quency power spectrum with respect to the gravity center in a frame;

• AudioSpectrumFlatness, flat1, . . . , f lat25 - multidimensional parame-
ter describing the flatness property of the power spectrum within a fre-
quency bin for selected bins; 25 out of 32 frequency bands were used for
a given frame;

• HarmonicSpectralCentroid - the mean of the harmonic peaks of the
spectrum, weighted by the amplitude in linear scale;

• HarmonicSpectralSpread - represents the standard deviation of the har-
monic peaks of the spectrum with respect to the harmonic spectral cen-
troid, weighted by the amplitude;

• HarmonicSpectralV ariation - the normalized correlation between am-
plitudes of harmonic peaks of each 2 adjacent frames;

• HarmonicSpectralDeviation - represents the spectral deviation of the
log amplitude components from a global spectral envelope;

– other audio descriptors:

• Energy - energy of spectrum in the parameterized sound;
• MFCC - vector of 13 Mel frequency cepstral coefficients, describe the

spectrum according to the human perception system in the mel scale
[21];

• ZeroCrossingDensity - zero-crossing rate, where zero-crossing is a point
where the sign of time-domain representation of sound wave changes;
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• FundamentalFrequency - maximum likelihood algorithm was applied
for pitch estimation [36];

• NonMPEG7− AudioSpectrumCentroid - a differently calculated ver-
sion - in linear scale;

• NonMPEG7−AudioSpectrumSpread - different version;
• RollOff - the frequency below which an experimentally chosen percent-

age equal to 85% of the accumulated magnitudes of the spectrum is con-
centrated. It is a measure of spectral shape, used in speech recognition
to distinguish between voiced and unvoiced speech;

• Flux - the difference between the magnitude of the DFT points in a
given frame and its successive frame. This value was multiplied by 107

to comply with the requirements of the classifier applied in our research;
• FundamentalFrequency′sAmplitude - the amplitude value for the pre-

dominant (in a chord or mix) fundamental frequency in a harmonic spec-
trum, over whole sound sample. Most frequent fundamental frequency
over all frames is taken into consideration;

• Ratio r1, . . . , r11 - parameters describing various ratios of harmonic par-
tials in the spectrum;
∗ r1: energy of the fundamental to the total energy of all harmonic
partials,

∗ r2: amplitude difference [dB] between 1st partial (i.e., the fundamen-
tal) and 2nd partial,

∗ r3: ratio of the sum of energy of 3rd and 4th partial to the total
energy of harmonic partials,

∗ r4: ratio of the sum of partials no. 5-7 to all harmonic partials,
∗ r5: ratio of the sum of partials no. 8-10 to all harmonic partials,
∗ r6: ratio of the remaining partials to all harmonic partials,
∗ r7: brightness - gravity center of spectrum,
∗ r8: contents of even partials in spectrum,

r8 =

√∑M
k=1 A

2
2k√∑N

n=1 A
2
n

where An - amplitude of nth harmonic partial,
N - number of harmonic partials in the spectrum,
M - number of even harmonic partials in the spectrum,

∗ r9: contents of odd partials (without fundamental) in spectrum,

r9 =

√∑L
k=2 A

2
2k−1√∑N

n=1 A
2
n

where L – number of odd harmonic partials in the spectrum,
∗ r10: mean frequency deviation for partials 1-5 (when they exist),

r10 =

∑N
k=1 Ak · |fk − kf1| /(kf1)

N
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where N = 5, or equals to the number of the last available harmonic
partial in the spectrum, if it is less than 5,

∗ r11: partial (i=1,...,5) of the highest frequency deviation.

Detailed description of popular features can be found in the literature; there-
fore, equations were given only for less commonly used features.

These parameters were calculated using fast Fourier transform, with 75 ms
analyzing frame and Hamming window (hop size 15 ms). Such a frame is long
enough to analyze the lowest pitch sounds of our instruments and yield quite
good resolution of spectrum; since the frame should not be too long because the
signal may then undergo changes, we believe that this length is good enough to
capture spectral features and changes of these features in time, to be represented
by temporal parameters. Our descriptors describe the entire sound, constituting
one sound event, being a single note or a chord.

The sound timbre is believed to depend not only on the contents of sound
spectrum (depending on the shape of the sound wave), but also on changes of
spectrum (and the shape of the sound wave) over time. Therefore, the use of tem-
poral sound descriptors was also investigated - we would like to check whether
adding of such (even simple) descriptors will improve the accuracy of classifica-
tion. The temporal parameters in our research were calculated in the following
way. Temporal parameters describe temporal evolution of each original feature
vector p, calculated as presented above. We were treating p as a function of time
and searching for 3 maximal peaks. Maximum is described by k - the consecutive
number of frame where the maximum appeared, and the value of this parameter
in the frame k:
Mi(p) = (ki, p[ki]), i = 1, 2, 3 k1 < k2 < k3
The temporal variation of each feature can be then presented by a vector T of
new temporal parameters, built as follows:
T1 = k2 − k1
T2 = k3 − k2
T3 = k3 − k1
T4 = p[k2]/p[k1]
T5 = p[k3]/p[k2]
T6 = p[k3]/p[k1]

Altogether, we obtained a feature vector of 63 averaged descriptors, and
another vector of 63 · 6 = 378 temporal descriptors for each sound object. We
made a comparison of performance of classifiers built using only 63 averaged
parameters and built using both averaged and temporal features.

2.2 Training and Testing Data

Our training and testing data were based on audio samples of the following
10 instruments: B-flat clarinet, cello, double bass, flute, French horn, oboe, pi-
ano, tenor trombone, viola, and violin. Full musical scale of these instruments
was used for both training and testing purposes. Training data were taken from
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MUMS – McGill University Master Samples CDs [22] and The University of
IOWA Musical Instrument Samples [26]. Both isolated single sounds and arti-
ficially generated mixes were used as training data. The mixes were generated
using 3 sounds. Pitches of composing sounds were chosen in such a way that
the mix constitutes a minor or major chord, or its part (2 different pitches),
or even a unison. The probability of choosing instruments is based on statistics
drawn from RWC Classical Music Database [6], describing in how many pieces
these instruments play together in the recordings (see Table 1). The mixes were
created in such a way that for a given sound, chosen as the first one, two other
sounds were chosen. These two other sounds represent two different instruments,
but one of them can also represent the instrument selected as the first sound.
Therefore, the mixes of 3 sounds may represent only 2 instruments.

Table 1. Number of pieces in RWC Classical Music Database with the selected instru-
ments playing together

 clarinet cello dBass flute fHorn piano trbone viola violin oboe 

clarinet 0 8 7 5 6 1 3 8 8 5 

cello 8 0 13 9 9 4 3 17 20 8 

doublebass 7 13 0 9 9 2 3 13 13 8 

flute 5 9 9 1 7 1 2 9 9 6 

frenchhorn 6 9 9 7 3 4 4 9 11 8 

piano 1 4 2 1 4 0 0 2 9 0 

trombone 3 3 3 2 4 0 0 3 3 3 

viola 8 17 13 9 9 2 3 0 17 8 
violin 8 20 13 9 11 9 3 17 18 8 

oboe 5 8 8 6 8 0 3 8 8 2 
 

Since testing was already performed on mixes in our previous works, the
results reported here describe tests on real recordings only, not based on sounds
from the training set. Test data were taken from RWC Classical Music Database
[6]. Sounds of length of at least 150 ms were used. For our tests we selected
available sounds representing the 10 instruments used in training, playing in
chords of at least 2 and no more than 6 instruments. The sound segments were
manually selected and labeled (also comparing with available MIDI data) in
order to prepare ground-truth information for testing.

3 Classification Methodology

So far, we applied various classifiers for the instrument identification purposes,
including support vector machines (SVM, see e.g. [10]) and random forests (RF,
[2]). The results obtained using RF for identification of instruments in mixes
outperformed the results obtained via SVM by an order of magnitude. There-
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fore, the classification performed in the reported experiments was based on RF
technique, using WEKA package [27].

Random forest is an ensemble of decision trees. The classifier is constructed
using procedure minimizing bias and correlations between individual trees, ac-
cording to the following procedure [17]. Each tree is built using different N -
element bootstrap sample of the training N -element set; the elements of the
sample are drawn with replacement from the original set. At each stage of tree
building, i.e. for each node of any particular tree in the random forest, p at-
tributes out of all P attributes are randomly chosen (p ≪ P , often p =

√
P ).

The best split on these p attributes is used to split the data in the node. Each
tree is grown to the largest extent possible - no pruning is applied. By repeat-
ing this randomized procedure M times one obtains a collection of M trees – a
random forest. Classification of each object is made by simple voting of all trees.

Because of similarities between timbres of musical instruments, both from
psychoacoustic and sound-analysis point of view, hierarchical clustering of in-
strument sounds was performed using R – an environment for statistical comput-
ing [25]. Each cluster in the obtained tree represents sounds of one instrument
(see Figure 1). More than one cluster may be obtained for each instrument;
sounds representing similar pitch usually are placed in one cluster, so various
pitch ranges are basically assigned to different clusters. To each leaf a classifier
is assigned, trained to identify a given instrument. When the threshold of 50%
is exceeded for this particular classifier alone, the corresponding instrument is
identified.

We also performed node-based classification in additional experiments, i.e.
when any node exceeded the threshold, but no its children did, then the instru-
ments represented in this node were returned as a result. The instruments from
this node can be considered similar, and they give a general idea on what sort
of timbre was recognized in the investigated chord.

Data cleaning. When this tree was built, pruning was performed and the leaves
representing less than 5% of sounds of a given instruments were removed, and
these sounds were removed from the training set. As a result, the training data
in case of 63-element feature vector consisted of 1570 isolated single sounds,
and the same number of mixes. For the extended feature vector (with temporal
parameters added), 1551 isolated sounds and the same number of mixes was
used. The difference in number is caused by different pruning for the different
hierarchical classification tree, built for the extended feature vector. Testing data
set included 100 chords.

Since we are recognizing instruments in chords, we are dealing with multi-
label data. The use of multi-label data makes reporting of results more compli-
cated, and the results depend on the way of counting the number of correctly
identified instruments, omissions and false recognitions [18], [34]. We are aware
of influence of these factors on the precision and recall of the performed classifi-
cation. Therefore, we think the best way to present the results is to show average
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Fig. 1. Hierarchical classification of musical instrument sounds for the 10 investigated
instruments

values of precision and recall for all chords in the test set, and f-measures calcu-
lated from these average results.

4 Experiments and Results

General results of our experiments are shown in Table 2, for various experimental
settings regarding training data, classification methodology, and feature vector
applied. As we can see, the classification quality is not as good as in case of our
previous research, thus showing the increased level of difficulty in case of our
current research.

The presented experiments were performed for various sets of training data,
i.e. for isolated musical instrumental sounds only, and for mixes added to the
training set. Classification was basically performed aiming at identification of
each instrument (i.e. down to the leaves of hierarchical classification), but we
also performed classification using information from nodes of the hierarchical
tree, as described in Section 3. Experiments was performed for 2 versions of fea-
ture vector, including 63 parameters describing average values of sound features
calculated through the entire sound in the first version of the feature vector,
and additionally temporal parameters describing the evolution of these features
in time in the second version. Precision and recall for these settings, as well as
F-measure, are shown in Table 2.
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As we can see, when training is performed on isolated sound only, the ob-
tained recall is rather low, and it is increased when mixes are added to the
training set. On the other hand, when training is performed on isolated sound
only, the highest precision is obtained. This is not surprising, as illustrating a
usual trade-off between precision and recall. The highest recall is obtained when
information from nodes of hierarchical classification is taken into account. This
was also expected; when the user is more interested in high recall than in high
precision, then such a way of classification should be followed. Adding temporal
descriptors to the feature vector does not make such a clear influence on the
obtained precision and recall, but it increases recall when mixes are present in
the training set.

Table 2. General results of recognition of 10 selected musical instruments playing in
chords taken from real audio recording from RWC Classical Music Database [6]

Training data Classification Feature vector Precision Recall F-measure 

Isolated sounds + 
mixes 

Leaves + nodes Averages only 63.06% 49.52% 0.5547 

Isolated sounds + 
mixes 

Leaves only Averages only 62.73% 45.02% 0.5242 

Isolated sounds only Leaves + nodes Averages only 74.10% 32.12% 0.4481 

Isolated sounds only Leaves only Averages only 71.26% 18.20% 0.2899 
Isolated sounds + 

mixes 
Leaves + nodes Averages + temporal 57.00% 59.22% 0.5808 

Isolated sounds + 
mixes 

Leaves only Averages + temporal 57.45% 53.07% 0.5517 

Isolated sounds only Leaves + nodes Averages + temporal 51.65% 25.87% 0.3447 
Isolated sounds only Leaves only Averages + temporal 54.65% 18.00% 0.2708  
One might be also interested in inspecting the results for each instrument.

These results are shown in Table 3, for best settings of the classifiers used. As we
can see, some string instruments (violin, viola and cello) are relatively easy to
recognize, both in terms of precision and recall. Oboe, piano and trombone are
difficult to be identified, both in terms of precision and recall. For double bass
recall is much better than precision, whereas for clarinet the obtained precision
is better than recall. Some results are not very good, but we must remember
that correct identification of all instruments playing in a chord is generally a
difficult task, even for humans.

It might be interesting to see which instruments are confused with which ones,
and this is illustrated in confusion matrices. As we mentioned before, omissions
and false positives can be considered in various ways, thus we can present differ-
ent confusion matrices, depending on how the errors are counted. In Table 4 we
presents the results when 1/n is added in each cell when identification happens
(n represents the number of instruments actually playing in the mix). To com-
pare with, the confusion matrix is also shown when each identification is counted
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Table 3. Results of recognition of 10 selected musical instruments playing in chords
taken from real audio recording from RWC Classical Music Database [6] - the results
for best settings for each instruments are shown

 precision recall f-measure 
bflatclarinet 50.00% 16.22% 0.2449 
cello 69.23% 77.59% 0.7317 
doublebass 40.00% 61.54% 0.4848 
flute 31.58% 33.33% 0.3243 
frenchhorn 20.00% 47.37% 0.2813 
oboe 16.67% 11.11% 0.1333 
piano 14.29% 16.67% 0.1538 
tenorTrombone 25.00% 25.00% 0.2500 
viola 63.24% 72.88% 0.6772 
violin 89.29% 86.21% 0.8772  

as 1 instead (Table 5). We believe that Table 4 more properly describes the clas-
sification results than Table 5, although the latter is more clear to look at. We
can observe from both tables which instruments are confused with which ones,
but we must remember that we are aiming at identifying actually a group of in-
struments, and our output also represents a group. Therefore, concluding about
confusion between particular instruments is not so simple and straightforward,
because we do not know exactly which instrument caused which confusion.

Table 4. Confusion matrix for the recognition of 10 selected musical instruments
playing in chords taken from real audio recording from RWC Classical Music Database
[6]. When n instruments are actually playing in the recording, 1/n is added in case of
each identification

     Classified as  
 
Instrument 

 
clarinet 

 
cello 

 
dBass 

 
flute 

 
fHorn 

 
oboe 

 
piano 

 
trombone 

 
viola 

 
violin 

clarinet 6 2 1 3.08 4.42 1.75 2.42 0.75 4.92 0.58 

cello 2 45 4.67 0.75 8.15 1.95 3.2 1.08 1.5 0.58 

dBass 0 0.25 16 0.5 2.23 0.45 1.12 0 0.5 0.25 

flute 0.67 0.58 1.17 6 1.78 1.37 0.95 0 0.58 0.5 

fHorn 0 4.33 1.83 0.17 9 0 0.33 0 4.83 3 

oboe 0 0.67 0.33 1.33 1.67 2 1.5 0.33 0 0.5 

piano 0 4.83 2.83 0 0 0 3 0 4.83 3 

trombone 0 0 0 0.17 0.53 0 0.92 2 0.58 0.58 

viola 1.33 1.75 4.5 2.25 7.32 1.03 3.28 1.92 43 0 

violin 2 5.58 7.67 4.75 9.9 3.45 4.28 1.92 7.25 75 
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Table 5. Confusion matrix for the recognition of 10 selected musical instruments
playing in chords taken from real audio recording from RWC Classical Music Database
[6]. In case of each identification, 1 is added in a given cell

      Classified as 
 

Instrument 

 
clarinet 

 
cello 

 
dBass 

 
flute 

 
fHorn 

 
oboe 

 
piano 

 
trombone 

 
viola 

 
violin 

clarinet 6 4 2 8 17 4 8 3 11 2 

cello 6 45 14 4 31 7 13 4 5 2 

dBass 0 1 16 3 12 2 6 0 2 1 

flute 2 2 4 6 7 5 3 0 2 1 

fHorn 0 10 4 1 9 0 2 0 12 6 

oboe 0 2 1 5 9 2 5 1 0 1 

piano 0 11 6 0 0 0 3 0 12 6 

trombone 0 0 0 1 2 0 4 2 2 2 

viola 4 5 14 8 29 4 13 6 43 0 

violin 6 14 21 13 35 10 15 6 18 75 

 

5 Summary and Conclusions

The investigations presented in this paper aimed at identification of instruments
in real audio polytimbral (multi-instrumental) recordings. The parameterization
included temporal descriptors, which improved recall when training was per-
formed on both single isolated sounds and mixes. The use of real recordings
not included in training set posed high level of difficulties for the classifiers; not
only the sounds of instruments originated from different audio sets, but also the
recording conditions were different. Taking this into account, we can conclude
that the results were not bad, especially that some sounds were soft, and still
several instruments were quite well recognized (certainly higher than random
choice). In order to improve classification, we can take into account usual set-
tings of instrumentation and the probability of use of particular instruments
and instrument groups playing together. The classifiers adjusted specifically to
given genres and sub-genres may yield much higher results, further improved by
taking into account cleaning of results (removal of spurious single indications in
the context of neighboring recognized sounds). Basing on the results of other re-
search [20], we also believe that adjusting the feature set and performing feature
selection in each node should improve our results. Finally, adjusting thresholds
of firing of the classifiers may improve the results.
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