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Abstract. Recently, numerous successful approaches have been developed for instrument recognition in monophonic sounds.
Unfortunately, none of them can be successfully applied to polyphonic sounds. Identification of music instruments in polyphonic
sounds is still difficult and challenging. This has stimulated a number of research projects on music sound separation, new features
development, and more recently on hierarchically structured classifiers used in content-based music recommender systems.
This paper introduces a hierarchically structured cascade classification system to estimate multiple timbre information from the
polyphonic sound by classification which is based on acoustic features and short-term power spectrum matching. This cascade
system makes a first estimate on the higher level decision attribute which stands for the musical instrument family. Then, the
further estimation is done within that specific family range. Experiments showed better performance of a hierarchical system
than the traditional flat classification method which directly estimates the instrument without higher level of family information
analysis. Traditional hierarchical structures were constructed in human semantics, which are meaningful from human perspective
but not appropriate for a cascade system. We introduce a new hierarchical instrument schema according to the clustering results
of the acoustic features. This new schema better describes the similarity among different instruments or among different playing
techniques of the same instrument. The classification results show the higher accuracy of cascade system with the new schema
compared to the traditional schemas.
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1. Introduction

This paper presents the methodology behind the
construction of system-driven hierarchical classifiers
forming the kernel of our web-based storage and
recommender system for music retrieval, called MI-
RAI [28]. It can automatically index musical input
(of polyphonic type) into FS-tree type database and
answer queries requesting specific musical pieces
[http://www.mir.uncc.edu/]. When MIRAI receives a
musical waveform, it divides that waveform into seg-
ments of equal size and then its classifiers identify the
most dominating musical instruments and emotions
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associated with that segment. Our database of musi-
cal instrument sounds is constantly growing and it cur-
rently has more than 4,000 sound objects representing
59 music instruments and about 1,100 features. Each
sound object is represented as a temporal sequence of
approximately 150–300 tuples which gives us a tem-
poral database of more than 1,000,000 tuples, each one
represented as a vector of about 1,100 features. This
database is mainly used to learn classifiers for auto-
matic indexing of musical instrument sounds and the
same for a construction of recommender systems for
polyphonic music retrieval.

In our previous research, we have already shown
that automatic indexing systems based on hierarchi-
cal type of classifiers, which are extracted from MIRAI
database of musical instrument sounds, usually outper-
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form similar systems based on sound separation tech-
niques (especially when many instruments are playing
at the same time) [28]. This research presents further
enhancement of MIRAI by the introduction and em-
ployment of cascade, system-driven hierarchical clas-
sifiers.

A variety of methods and classifiers have been ap-
plied in musical instrument estimation domain [4,7,
8,11,13,19,20,27,42]. Still, in a classifier based ap-
proach, it is a nontrivial problem to choose the one
with a optimal performance in terms of estimation
accuracy for most western orchestral instruments. A
common practice is to try different classifiers on the
same training database and select the one which yields
the highest confidence. Then, the selected classifier
is used for the timbre estimation on analyzed music
sounds. There are boosting systems [9,10] consisting
of a set of weak classifiers which iteratively are adding
them to a final strong classifier. Boosting systems usu-
ally achieve a better estimation model by training each
given classifier on a different set of samples from the
training database, which keeps the same number of
features or attributes. In other words, a boosting sys-
tem assumes that there is a big difference among dif-
ferent group of subsets of the training database so that
different classifiers are trained on the corresponding
subset based on their expertise. However, due to the
homogeneous characteristics across all data samples in
a training database, musical data usually could not take
full advantage of such panel of learners because none
of the given classifiers would get a majority weight.
Thus the improvement cannot be achieved by such a
combination of classifiers.

Martin and Kim [27] employed the KNN algo-
rithm to a hierarchical classification system with
31 features extracted from Correlograms which is a
three-dimensional representation of the signal. With a
database of 1023 sounds they achieved 87% of suc-
cessful classifications at the family level and 61% at
the instrument level when no hierarchy was used. The
accuracy at the instrument level was increased to 79%
by using the hierarchical procedure but it degraded
the performance at the family level (79%). Without
including the hierarchical procedure performance fig-
ures were lower than the ones they obtained with a
Bayesian classifier. The fact that the best accuracy fig-
ures are around 80% and that Martin have settled into
similar figures can be interpreted as an estimation of
the limitations of the KNN algorithm (provided that
the feature selection has been optimized with genetic
or other kind of techniques). Therefore, more powerful

techniques should be explored. Bayes Decision Rules
and Naive Bayes classifiers are simple probabilistic
classifiers by which the probabilities for the classes
and the conditional probabilities for a given feature and
a given class are estimated based on their frequencies
over the training data. They are based on probability
models that incorporate strong independence assump-
tions, which often have no bearing in reality, hence are
naive. The resultant rule is formed by counting the fre-
quency of various data instances, and can be used then
to classify each new instance. Brown [4] applied this
technique to Mel-Cepstral Coefficients by K-means
clustering algorithm and a set of Gaussian mixture
models. Each model was used to estimate the probabil-
ities that a coefficient belongs to a cluster. Probabilities
of all coefficients were then multiplied together and
were used to perform the likelihood ratio test. It then
classified 27 short sounds of oboe and 31 short sounds
of sax with an accuracy rate of 85% for oboe and 92%
for sax. Neural networks process information with a
large number of highly interconnected processing neu-
rons working in parallel to solve a specific problem.
Neural networks learn by example. Cosi [5] developed
a timbre classification system based on auditory pro-
cessing and Kohonen self-organizing neural networks.
Data were preprocessed by peripheral auditory trans-
formations to extract perception features, then were
fed to the network to build the map, and finally were
compared in clusters with human subjective similarity
judgments. In the system, nodes were used to repre-
sent clusters of the input spaces. The map was used
to generalize similarity criteria even to vectors not uti-
lized during the training phase. All 12 instruments in
the test were quite well distinguished by the map. Hid-
den Markov Model is a statistical model by which the
extracted model parameters can be used to do sensitive
database searching. In a regular Markov model, the
state is directly visible to the observer, and therefore
the state transition probabilities are the only parame-
ters. A hidden Markov model adds outputs: each state
has a probability distribution over the possible output
tokens. This technique has been successfully applied
in speech recognition [21] and natural language pro-
cessing [6]. Paulus and Virtanen [31] developed a sys-
tem with this technique for automatic transcription of
drum instruments from polyphonic music signals. A
background model with only one state is created for
each instrument to describe the sound when the target
instrument is played. Since drum transcription requires
a good temporal resolution, the length of the analysis
frame is 24 ms with 75% overlap between consecu-
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tive frames, leading into temporal resolution of 6 ms.
The most likely model sequence of sound presence and
absence is determined by decoding the signal on the
location where the instrument is hit, and the second
models all the other parts of the signal. The feature
distributions in each state are modeled with Gaussian-
mixture models (GMMs). Three types of instruments
have been evaluated in their experiments: kick drum,
snare drum, and hi-hats. Total average classification
rate was from 44% to 59.7%. The drawbacks of the
system include modeling in the location of a hit with
a fixed context length instead of with a sound proper-
ties oriented context length, and limitation of features
used in the experiment. This technique was used to de-
duce the most useful attributes in classifying sounds
and to compare different resultant sound classes by
different attributes. Binary Tree is a data structure in
which each node contains one parent and not more
than 2 children. It has been pervasively used in classi-
fication and pattern recognition research. Binary Trees
are constructed top-down with the most informative
attributes as roots to minimize entropy. Jensen and
Arnspang [14] proposed an adapted Binary Tree with
real-valued attributes for instrument classification re-
gardless of pitch of the instrument in the sample. Vari-
ous classifiers for a small number of instruments have
been used in musical instrument estimation domain in
the literature; yet it is a non-trivial problem to choose
the one with optimal performance in terms of estima-
tion rate for most western orchestral instruments. It is
common to apply the different classifiers on the train-
ing data based on a specific group of features extracted
from raw audio files and get the winner with the high-
est confidence for the testing music sounds. However,
different instruments have different acoustic characters
and they usually need different features to model the
classifiers. In this paper, we will address that issue.

In many cases, the speed of classification is an im-
portant issue. It is computationally expensive to clas-
sify audio signals of CD quality based on the raw
spectrum. To achieve the applicable classification time
while preserving high classification accuracy, we in-
troduce a cascade classifier which could further im-
prove the instruments recognition of a Music Informa-
tion Retrieval (MIR) system.

Cascade classifiers have been investigated in the
domain of handwritten digit recognition. Thabtah [3]
used filter-and-refine processes and combined them
with KNN to give the rough but fast classification with
lower dimensionality of features at filter step and to re-
match the objects marked by the previous filter with

the higher accuracy by increasing dimensionality of
features. Also, Lienhart [22] used CART trees as base
classifiers to build a boosted cascade of simple feature
classifiers to achieve rapid object detection.

To our best knowledge, not much work has been
done in investigating the applicability and usefulness
of cascade classifiers in MIR area [16,22]. However,
it is possible to construct a simple instrument fam-
ily classifier with a low false recognition rate, which
is called a classification pre-filter. When classification
pre-filter assigns a specific family label to a musical
frame, further classification of that frame is based on
classifiers trained only on samples representing this
specific family (samples representing other families
are immediately discarded). Since the number of train-
ing samples is reduced, the computational complexity
is reduced while the recognition rate still remains high.

Due to the existence of different characteristics for
different features, we introduce a new method appli-
cable to the music domain, which is to train different
classifiers on different feature sets instead of different
data samples. For instance, both MFCC and harmonic
peaks are composed of serial real values, which are in
the form of numeric vectors and therefore work well
with KNN instead of Decision tree. On the other hand,
features such as zero crossing, spectrum centroid, roll-
off, attack-time and so on, are acoustic features in the
form of single values, which could be combined to
produce better rules after applied with decision tree or
Bayes Decision Rules.

2. Timbre relevant features

We use audio data from the system MIRAI [28]
which contains more than 4000 sounds mostly taken
from the MUMS (McGill University Master Sam-
ples). The descriptions of these sounds are in terms of
standard musical features which definitions are pro-
vided by MPEG7, in terms of non-MPEG7 features
used earlier by other researchers, and in terms of
new temporal features proposed in our system MI-
RAI (http://www.mir.uncc.edu). The audio data repre-
sent the following instruments: alto flute, bach trum-
pet, bass clarinet, bassoon, bass trombone, Bb trumpet,
b-flat clarinet, cello, bowed cello, cello martele, cello
mute, cello pizzicato, contrabass clarinet, contrabas-
soon, crotales, ctrumpet, ctrumpet harmonStemOut,
bowed double bass, double bass martele, double bass
mute, double bass pizzicato, e-flat clarinet, electric
bass, electric guitar, English horn, flute, French horn,
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French Horn mute, glockenspiel, marimba crescendo,
marimba single stroke, oboe, piano-9ft, piano-hamburg,
piccolo, piccolo flutter, soprano saxophone, tenor sax-
ophone, steel drums, tenor trombone, tenor trombone
mute, tuba, tubular bells, bowed vibraphone, vibra-
phone hard mallet, bowed viola, viola martele, viola
mute, viola natural, viola pizzicato, violin artificial,
bowed violin, violin ensemble, violin mute, violin nat-
ural harmonics, xylophone.

Currently in MIRAI we use a set of acoustical and
statistical features to describe sound and timbre. The
features we extract are a mixture of MPEG-7 fea-
tures, as well as non-MPEG temporal features. The
spectrum features have two different frequency do-
mains: Hz frequency and Mel frequency. Frame size
was carefully designed to be 120ms, so that the 0th
octave G (the lowest pitch in our audio database) can
be detected. The hop size is 40ms with a overlap-
ping of 80ms. Since the sample frequency of all the
music objects is 44,100Hz, the frame size is 5292.
A hamming window was applied to all STFT trans-
forms to avoid jittering in the spectrum. These fea-
tures are briefly described in the subsections below. We
use our own software, developed for MIRAI project
(see: http://www.mir.uncc.edu/), to extract all these
features.

2.1. MPEG7 features

Below are the MPEG-7 standard audio features,
both in the frequency domain and in the time domain
[29].

– Spectrum Centroid: Describes the center-of-gra-
vity of a log-frequency power spectrum. It eco-
nomically indicates the pre-dominant frequency
range.

– Spectrum Spread: The Root of Mean Square
value of the deviation of the Log frequency power
spectrum with respect to the gravity center in a
frame. Like Spectrum Centroid, it is an economic
way to describe the shape of the power spectrum.

– Spectrum Basis Functions: These are used to re-
duce the dimensionality by projecting the spec-
trum from high dimensional space to low dimen-
sional space with compact salient statistical infor-
mation.

– Spectrum Projection Functions: A vector to rep-
resent a reduced feature set by the projection
against a reduced rank basis.

– Harmonic Peaks: A sequence of local peaks of
harmonics of each frame.

– Log Attack Time: This feature is defined as the
decimal logarithm of the time duration from the
time instant when the signal starts to the time
when it reaches its maximum value, or when it
reaches its sustained part, whichever comes first.

2.2. Non-MPEG7 features

– SpecCentroid: Calculated as Harmonic Spec-
tral Centroid from MPEG-7, representing power-
weighted average of the frequency of the bins in
the linear power spectrum, and averaged over all
the frames of the steady state of the sound.

– Zero crossing: Counts the number of times that
the signal sample data changes signs in a frame
[38].

– Roll-off: averaged (over all frames) frequency be-
low which an experimentally chosen percentage
of the accumulated magnitudes of the spectrum is
concentrated.

– Spectral Flux: This is used to describe the spectral
rate of the signal. It is computed by the total dif-
ference between the magnitude of the FFT points
in a frame and its successive frame [38].

– Mel frequency cepstral coefficients (MFCC):
These coefficients describe the spectrum accord-
ing to the human perception system in the Mel
scale. They are computed by grouping the STFT
points of each frame into a set of 40 coefficients
by a set of 40 weighting curves with logarithmic
transform and a discrete cosine transform (DCT)
[24]. We use the MFCC functions from the Julius
software toolkit [1].

– Tristimulus: Describes the ratio of the energy of 3
groups of harmonic partials to the total energy of
harmonic partials. The following groups are used:
fundamental, medium partials (2, 3, and 4) and
higher partials (the rest) [33].

3. Hierarchical structure of decision attribute

It is easier for a person to tell the difference between
violin and piano than violin and viola. Because vio-
lin and piano belong to different instrument families,
then they have quite different timbre qualities. Violin
and viola fall into the same instrument family which
indicates that they share a similar timbre quality. If we
can build the classifiers both on the family level and
the instrument level, the polyphonic music sound is
first classified at the instrument family level. After a



W. Jiang and Z.W. Ras / Multi-label automatic indexing of music by cascade classifiers 153

Fig. 1. Hornbostel-Sachs hierarchical structure.

specific instrument family label is assigned to the an-
alyzed sound by the classifier, it is further classified at
the instrument level by another classifier which is built
on the training data of that specific instrument family.
Since there are fewer instruments in this family, the
classifier learned from this family has the expertise of
identifying the instruments within this family. Before
we discuss how to build classifiers on the different lev-
els, let us first look at the hierarchical structure of the
western instruments.

Erich von Hornbostel and Curt Sachs published an
extensive scheme for musical instrument classifica-
tion in 1914. Their scheme is widely used today, and
is most often known as the Hornbostel-Sachs sys-
tem. This system includes aerophones (wind instru-
ments), chordophones (string instruments), idiophones
(made of solid, non-stretchable, resonant material),
and membranophones (mainly drums). Idiophones and
membranophones are together considered as percus-
sion. Additional groups include electrophones, i.e. in-
struments where the acoustical vibrations are pro-
duced by electric or electronic means (electric guitars,
keyboards, synthesizers), complex mechanical instru-
ments (including pianos, organs, and other mechan-
ical music makers), and special instruments (include
bullroarers, but they can be classified as free aero-
phones).

Idiophones subcategories include: Struck (claves,
clapper, castanets, and finger cymbals). Membra-
nophones include the following different kind of
drums: Cylindrical drums, Conical drum, Barrel drum,
Hourglass drum, Goblet drum, Footed drum, Long
drum, Kettle or pot drum, Frame drums, and Fric-
tion drums. Chordophones include: zither, mandolins,
guitars, ukuleles, Lute (bowed) – viols (fretted neck),
fiddles, violin, viola, cello, double bass, and hurdy-

gurdy (no frets), Harp. Aerophones are classified as
single reed (such as clarinet, saxophones), double
reed (such as oboe, bassoon) and lip vibrated (trum-
pet or horn) according to the mouthpiece used to set
air in motion to produce sound. Some of the Aero-
phones subcategories are also called woodwinds or
brass, but this criterion is not based on the material
the instrument is made of, but rather on the method
of sound production. In woodwinds, the change of
pitch is mainly obtained by the change of the length
of the column of the vibrating air. Additionally, over-
blow is applied to obtain the second, third or fourth
harmonic to become the fundamental. In brass instru-
ments, over-blows are very easy because of wide bell
and narrow pipe, and therefore over-blows are the main
method of pitch changing. Sounds can be also classi-
fied according to the articulation. It can be performed
in three ways: (1) sustained or non-sustained sounds,
(2) muted or not muted sounds, (3) vibrated and not
vibrated sounds. This classification may be difficult,
since the vibration may not appear in the entire sound;
some changes may be visible, but no clear vibration.
Also, brass is sometimes played with moving the mute
in and out of the bell. Most of musical instrument
sounds of definite pitch have some noises/continuity in
their spectra. According to MPEG7 classification [14],
there are four classes of musical instrument sounds:
(1) Harmonic, sustained, coherent sounds – well de-
tailed in MPEG7, (2) Non-harmonic, sustained, co-
herent sounds, (3) Percussive, non-sustained sounds –
well detailed in MPEG7, (4) Non-coherent, sustained
sounds.

Figure 1 shows the simplified Hornbostel/Sachs
tree. We do not include membranophones here because
the instruments of this family usually do not produce
the harmonic sound so that they need special tech-
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Fig. 2. Hierarchical structure according to playing method.

Fig. 3. Hierarchical decision attributes.

niques to be identified. This paper focuses on the har-
monic instruments which fall into the other three fam-
ilies.

Figure 2 shows us another hierarchical structure of
instrument family which is grouped by the way how
the musical instruments are played.

In [43], a multi-hierarchical decision system S with
a large number of descriptors built for describing mu-
sic sound objects is described. The decision attributes
in S are hierarchical and they include Hornbostel-
Sachs classification and classification of instruments
with respect to a playing method. The information
richness hidden in these descriptors has strong impli-
cation on the confidence of classifiers built from S and
used as a tool by the content-based Automatic Index-
ing Systems (AIS). Because decision attributes are hi-
erarchical, the indexing and timbre estimation can be
done with respect to different granularity levels of mu-
sic instrument classes. We can then identify not only
the instruments playing in a given music piece but
also classes of instruments. In this paper we propose a
methodology of building cascade classifiers from mu-
sical datasets.

4. Cascade hierarchical decision systems

In hierarchical decision systems, the initial group
of classifiers is trained using all objects in an infor-
mation system S partitioned by values of the decision
attribute d at all granularity levels (one classifier per

level). Only values of the highest granularity level (cor-
responding granules are the largest) are used to split S
into information sub-systems where each one is built
by selecting objects in S of the same decision value.
These sub-systems are used for training new classifiers
at all granularity levels of its decision attribute. Next,
we split each sub-system further by sub-values of its
decision value. The obtained tree-type structure with
groups of classifiers assigned to each of its nodes is
called a cascade classifier.

Let S(d) = (X,A ∪ {d}, V ) be a decision system
as introduced in [16,32], where X is a set of musical
objects, A is the set of features used as classification
attributes, d is a hierarchical decision attribute, Vd is a
set of values of the decision attribute, and VA is a set
of values of all classification attributes. Figure 3 shows
an example of a hierarchical decision attribute.

Let Vd = {d[1], d[2], . . . , d[k]} is a set of all val-
ues of the attribute d at level 1 of its tree represen-
tation. Let Xi = {x ∈ X : d(x) = d[i]} and
Si[di] = (Xi, A∪{d[i]}, V ), for any 1 ≤ i ≤ n. Now,
assume that CR(S) denotes a tree of height one. Sys-
tem S is its root and Si(d[i]), (1 ≤ i ≤ n), are its chil-
dren. The outgoing edge from S to Si(d[i]) is labeled
by d[i], for any 1 ≤ i ≤ n.

Cascade representation of S(d) is defined as a tree
with a root S(d) and all its descendants being built
by executing the instruction [if card(Vd) > 1, then
replace S(d) by CR(S(d))] recursively, starting from
the root and then repeating for all leaves of a con-
structed tree.
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Table 1
Example of hierarchical decision attribute

a b c d

x1 2 1 2 d[1, 1]

x2 2 1 3 d[1, 1]

x3 1 1 0 d[1, 2]

x4 1 1 3 d[1, 2]

x5 2 2 2 d[2, 1]

x6 2 2 3 d[2, 1]

x7 1 1 1 d[1, 1]

x8 1 1 1 d[1, 1]

x9 2 2 1 d[2, 1]

x10 2 2 0 d[2, 1]

x11 1 1 2 d[2, 2]

x12 1 1 1 d[2, 2]

5. Example

Let us look at the example of a decision system S(d)
represented as Table 1. Its attributes are {a, b, c}. d is
the decision attribute.

To build a cascade representation of S(d), we take
its subsystems:

S∗(d) = ({xi : 1 ≤ i ≤ 12}, {a, b, c, d}, V ),

S[1](d[1]) = ({xi : i = 1, 2, 3, 4, 7, 8},
{a, b, c, d}, V ),

S[2](d[2])= ({xi : i=5, 6, 9, 10, 11, 12},
{a, b, c, d}, V ),

S[1,1](d[1, 1]) = ({xi : i = 1, 2, 7, 8},
{a, b, c, d}, V ),

S[1,2](d[1, 2]) = ({xi : i = 3, 4}, {a, b, c, d}, V ),

S[2,1](d[2, 1]) = ({xi : i = 5, 6, 9, 10},
{a, b, c, d}, V ),

S[2,2](d[2, 2]) = ({xi : i = 11, 12}, {a, b, c, d}, V ).

Now, the corresponding cascade representation of
S(d), denoted as ({S∗(d)} ∪ {Sk(d) : k ∈ J},≺),
where J = {[1], [2], [1, 1], [1, 2], [2, 1], [2, 2]} and “≺”
means parent-child relation, is represented by a tree
similar to Fig. 4.

The partition of objects in S(d) can be driven by an
optimization function or it can be predefined, as it is
done in MIRAI [30], by following either Hornbostel-
Sachs classification or classification of instruments
with respect to a playing method.

Fig. 4. Cascade representation of S(d).

Fig. 5. Cascade classifier for S(d).

6. Cascade classifiers

Let S(d) = (X,F ∪ {d}) be a decision system,
where d is a hierarchical attribute. We follow the no-
tation of the previous section to represent its values,
with d[i] referring to a child of d and d[i, j] to its
grandchild. F = {f1, . . . , fm} is the set of all avail-
able features which are extracted from the input signal
and then used by the classifiers respectively to identify
the analyzed frame. X = {x1, . . . , xt} is the set of
all segmented frames from the analyzed audio sound.
Casc(S(d)) = {Sk(d) : k ∈ J} is a cascade repre-
sentation of S(d), where J is the index set of all nodes
of the hierarchical tree, such as [1], [1, 1], [1, 2] and
so on. A sample representation structure for a cascade
classifier is given in Fig. 5.

In this sample, three classifiers are associated with
the root level of the tree. The first one (with i = 1) is
trained by S with values of the decision attribute inter-
preted as the largest granules (largest generalizations
of instruments). The last one (with i = 3) is based
on decision attribute values interpreted as the smallest
granules (single instruments). For each frame xi, the
whole process is started by the classification at the root
of hierarchical tree and followed by the classification
at other lower levels of the tree. The system selects
the appropriate classifier class(S[k], d, i) and feature
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Fig. 6. Timbre estimation framework based on the cascade hierarchical classification system with classifier and feature selection.

Table 2
Cascade classifier for S(d)

Root Classname Classifier Support Confidence

d All-instruments Class(S, d, 2) 771 96.97%
d All-instruments Class(S, d, 1) 764 96.02%
d All-instruments Class(S, d, 3) 730 91.80%
d[1] Aerophone Class(S, d[1], 2) 269 98.26%
d[1] Aerophone Class(S, d[1], 3) 265 96.84%
d[2] Chordophone Class(S, d[2], 2) 497 98.83%
d[2] Chordophone Class(S, d[2], 3) 466 92.75%
d[3] Idiophone Class(S, d[3], 2) 19 95.95%
d[3] Idiophone Class(S, d[3], 3) 19 95.95%
d[1, 1] Aero-double-reed Class(S, d[1, 1], 3) 70 98.94%
d[1, 2] Aero-lip-reed Class(S, d[1, 2], 3) 113 95.66%
d[1, 3] Aero-side Class(S, d[1, 3], 3) 10 90.91%
d[1, 4] Aero-single-reed Class(S, d[1, 4], 3) 72 99.54%
d[2, 1] Chord-composite Class(S, d[2, 1], 3) 410 93.18%

f(S[k], d, i) to perform classification at each possible
level S[k] from the top to the bottom. The confidence
of classification at each level is conf(xi, S[k]) which
has to be either equal or above the confidence thresh-
old λ1. Otherwise, the classification process fails. Af-
ter the classification process reaches the bottom level,
which is the instrument level, we have the final instru-
ment estimations {dp} for the frame xi. The overall
confidence of each instrument identified in the frame
xi is calculated by multiplying the confidence obtained
at each node conf(xi, dp) =

∏
conf(xi, S[k]) lead-

ing to that instrument. After all the individual frames
are estimated by the classification system, a smoothing
process is performed by calculating the average con-
fidence of each possible instrument within the index-

ing window Conf(dp) =
∑

{conf(xi,dp):i∈w}
s , where

w is the set of indexes of all frames in a window and
s is the number of frames in w. For each window, we
use 120ms as the frame size and 40ms as the hop size.
Only instruments satisfying the confidence threshold
λ2 are listed in the final result within the indexing win-
dow. Figure 6 shows the MIR timbre estimation frame-
work based on the cascade hierarchical classification
system.

7. Experiments and results based on all features

We build a hierarchical decision system S with all
acoustic features described earlier in this paper which
are also listed in Table 3. The decision attributes in S
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Fig. 7. Non-cascade classifier for Hornbostel/Sachs classification of instruments and their accuracy.

Table 3
Feature group

Group Feature description

A 33 Flatness Coefficients
B 13 MFCC Coefficients
C 28 Harmonic Peaks
D 38 Spectrum projection coefficients
E Log spectral centroid, spread, flux, rolloff, zerocrossing

are hierarchical and they represent Hornbostel-Sachs
classification. The information richness hidden in de-
scriptors has strong implication on the confidence of
classifiers built from the decision system S. Hierarchi-
cal decision attributes allow us to have the indexing
done on different granularity levels of classes of mu-
sical instruments. We can identify not only the instru-
ments but also classes of instruments if the instrument
level identification fails. We show that cascade clas-
sifiers outperform standard classifiers. Table 2 repre-
sents the cascade classifier for Hombostel-Sachs clas-
sification of instruments and its confidence in identify-
ing them.

The testing was done for musical instrument sounds
of pitch B3. The results in Table 2 show the confidence
of the classifiers trained on different subsets which cor-
respond to the different nodes in the hierarchical tree.
The decision attributes of these classifiers are at the in-
strument level.

Figure 7 shows the confidence of the classifiers
trained on the whole dataset (the largest granule).
These classifiers describe values of the decision at-
tribute at its different granularity levels represented by
nodes of the tree. The confidence of a standard classi-
fier class(S, d, 3) for Hombostel-Sachs classification
of instruments is 91.80%. However, we get better re-
sults by following the cascade approach. When we use
the classifier class(S, d, 2) followed by the classifier
class(S, d[1, 1], 3), the precision in recognizing mu-
sical instruments in “aero double reed” class is equal
to 96.02% ∗ 98.94% = 95.00%. Also, its confidence

in recognizing instruments in “aero single reed” class
is equal to 96.02% ∗ 99.54% = 95.57%. It has to
be noted that this improvement in classification con-
fidence is obtained without increasing the number of
attributes in the subsystems of S.

Again, from Table 2 and Fig. 7, when we com-
pare different classifiers which are built from the same
training dataset but on different granularity levels of
decision attribute, we find that generic classifiers usu-
ally have the higher confidence than the peculiar one
(Fig. 8).

Following this strategy, we get high classification
confidence for single instrument estimation in compar-
ison to a regular non-cascade classification approach.

8. Classifier selection based on different features

Cascade classification system allows different clas-
sifiers and different features to be used at different lev-
els of the hierarchical structure. In order to investigate
how the classifier and feature selection affect the cas-
cade system, two experiments of classification based
on KNN and Decision Tree were conducted: 1) classi-
fication with each feature group; 2) classification with
the combination of different feature groups.

The training dataset of middle C includes 26 differ-
ent instruments: Electric Guitar, Bassoon, Oboe, B-flat
clarinet, Marimba, C-Trumpet, E-flat Clarinet, Tenor
Trombone, French horn, Flute, Viola, Violin, English
horn, Vibraphone, Accordion, Electric Bass, Cello,
Tenor saxophone, B-Flat Trumpet, Bass flute, Double
bass, Alto flute, Piano, Bach trumpet, Tuba, and Bass
Clarinet.

These instruments cover the typical western musical
instruments families which are played by the orches-
tra. There are 2762 frames extracted from those instru-
ment sound objects. We tested different features with
different classifiers to get the optimal pair of them. The
results of all the experiments in this paper are gener-
ated by 10-fold cross validation
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Fig. 8. Confidence of classifiers built on different levels of decision attribute (pitch 3B).

Table 4
Classification of each feature group

Feature group Classifier Confidence (%)

A KNN 99.23
A Decision Tree 94.69
B KNN 98.19
B Decision Tree 93.57
C KNN 86.60
C Decision Tree 91.29
D KNN 47.45
D Decision Tree 31.81
E KNN 99.34
E Decision Tree 99.77

8.1. Classification on each feature group

In experiment 1, we divided the features into the fol-
lowing 5 groups (Table 3).

Among the groups A to D, each represents one sin-
gle feature vector of multiple numeric values. Group E
includes all the statistical single-value features. Clas-
sifiers of KNN and Decision Tree are applied to the
dataset with each feature group. For decision tree clas-
sifier, we choose J48 in Weka [6], which is the imple-
mentation of C4.5 decision tree algorithm [29]. The
confidence factor used for pruning tree (smaller values
incur more pruning) is 0.25. The minimum number of
instances per leaf is 10. For K-nearest neighbor clas-
sifier [9], we have chosen IBK in Weka [6], which is
the brute force search algorithm for nearest neighbor
search. The number of neighbors is 3. Euclidean dis-
tance is used as similarity function. Confidence is de-
fined as the ratio of the correct classified instances over
the total number of instances.

The result in Table 4 shows that some features work
better with KNN than decision tree, such as Flatness
Coefficients (Group A), MFCC (Group B), and spec-
trum projection coefficients (Group D), Decision tree
works better with harmonic peaks (Group C). The sta-
tistical features (Group E) show little difference be-
tween the two classifiers.

Fig. 9. Classification based on KNN in experiment 2.

8.2. Classification on the combination of different
feature groups

In order to further explore the relationship between
feature groups and classifiers, we merge every two fea-
ture groups into larger feature groups and test them
with different classifiers. Figure 9 shows the result of
KNN classification.

The confidence of KNN changes minimally when
more features are added. And when Group C (harmonic-
Peaks) is added to Group A, B, D, and E, the classifi-
cation results deteriorate. This result further validates
the conclusion from Experiment 1 that harmonic peaks
do not fit KNN classifier well.

Figure 10 shows the result of decision tree classifi-
cation. We observe that group E improves other feature
groups when it is added. However those results do not
improve much compared to the classification result of
single Group E. It means Group E yields the best result
for decision tree classifier.

From those two experiments, we see that KNN
classifier works better with feature vectors such as
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Fig. 10. Classification of decision tree in experiment 2.

spectral flatness coefficients, projection coefficients
and MFCC. Decision tree works better with harmonic
peaks and statistical features. Simply adding more fea-
tures together does not improve the classifiers and
sometime even worsens the classification results (such
as adding harmonic to other feature groups). In cas-
cade system, it is a non-trivial task to perform feature
selection for different classifiers to optimize the timbre
estimation.

9. Feature and classifier selection at each level of
cascade system

According to the previous discussion and conclu-
sion, cascade system has to select the appropriate fea-
ture and classifier to achieve the best estimation result
at each level of cascade classification. We test four fea-
ture groups (A, B, C, D) with three different classifiers
(NaiveBayes, KNN, Decision Tree). From the classifi-
cation results, we try to learn how to perform feature
selection and classifier selection based on the informa-
tion hidden in the current training database. We use
the same algorithms from Weka for KNN and decision
tree classifiers as in the previous section. NaiveBayes
classifier [11] is added to this experiment.

According to the results shown in Fig. 11, at the top
level of Hornbostel/Sachs hierarchical tree (decision
attribute is on class1 level) KNN classifier with feature
A yields the best estimation confidence. At the begin-

Fig. 11. Feature and classifier selection at top level.

Fig. 12. Feature and classifier selection at second level for aero-
phones.

Fig. 13. Feature and classifier selection at second level for chordo-
phones.

ning the system should use Flatness Coefficients and
KNN to discover the family that the analyzed sound
object belongs to. In order to perform the further esti-
mation on the lower level of the instrument family, the
system also needs to know how to select the feature
and classifier at that particular level.

Figures 12, 13 and 14 tell us that KNN classifier
and feature A (Flatness Coefficients) are still the best
choice for the instruments falling in the families Chor-
dophone or Idiophone. If the analyzed sound object is
estimated as Aerophone, feature B (MFCC) is the bet-
ter choice than others. Table 5 concludes the feature
and classifier selection more clearly.
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Table 5
Feature and classifier selection table for level 1

Node Feature Classifier

Chordophone Flatness Coefficients KNN
Aerophone MFCC Coefficients KNN
Idiophone Flatness Coefficients KNN

Fig. 14. Feature and classifier selection at second level for idio-
phones.

Fig. 15. Feature and classifier selection at third level for aero double
reed.

Fig. 16. Feature and classifier selection at third level for aero lip
vibrated.

We continue to perform the classification on the dif-
ferent subsets at the third level of Hornbostel-Sachs hi-
erarchical tree and get the classification results shown
in Figs 15–20.

The instrument name is eventually estimated by the
classifiers at the bottom level. Table 6 shows the clas-

Fig. 17. Feature and classifier selection at third level for aero single
reed.

Fig. 18. Feature and classifier selection at third level for aero side.

Fig. 19. Feature and classifier selection at third level for chord com-
posite.

sifier and feature selection results from the classifi-
cation experiments at second level of the hierarchical
tree. A notable result is that the subset of “Aero-single-
reed” does not inherit the same character from the par-
ent node of “Aerophone”. Instead of selecting Feature
B(MFCC) and KNN, the decision tree along with Fea-
ture A(Flatness Coefficients) yields the better classifi-
cation result.

According to the above knowledge derived from the
training database, we can optimize the feature selec-
tion and classifier selection at each level of hierarchical
tree and further improve the overall estimation result
for cascade classification system.
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Fig. 20. Feature and classifier selection at third level for idio struck.

Table 6
Feature and classifier selection table for level 2

Node Feature Classifier

Chrd-composite Flatness Coefficients KNN
Aero-double-reed MFCC Coefficients KNN
Aero-lip-vibrated MFCC Coefficients KNN
Aero-side MFCC Coefficients KNN
Aero-single-reed Flatness Coefficients Decision Tree
Idio-struck Flatness Coefficients KNN

10. Hierarchical structure built by clustering
analysis

Clustering is the method that divides data objects
into similarity groups (clusters) according to a de-
fined distance measure. Clustering is widely used as an
important technique of machine learning and pattern
recognition in the fields of biology, genomics and im-
age analysis. However it has not been well investigated
in the music domain since the category information of
musical instruments has already been defined by mu-
sicians as the two hierarchical structures demonstrated
in the last section. Those structures group the musi-
cal instruments according to their semantic similarity
which is concluded from the human experience. How-
ever the instruments that are assigned to the same fam-
ily or subfamily by those hierarchical structures often
sound quite different from another. On the other hand,
instruments that have very similar timbre qualities can
be assigned to very different groups by those hierarchi-
cal structures. The inconsistency between the timbre
quality and the family information causes the incor-
rect timbre estimation of cascade classification system.
For instance, the trombone belongs to the aerophone
family, but the system often classifies it as the chor-
dophone instruments, such as violin. In order to take
full advantage of the cascade classification strategy, we
build the new hierarchical structure of musical instru-
ments by the machine learning technique. Cluster anal-

ysis is commonly used to search for groups in data.
This is most effective when the groups are not already
known. We use the cluster analysis methods to reorga-
nize the instrument group according to the similarity
of timbre relevant features among the instruments.

10.1. Clustering analysis methods

There exist many clustering algorithms. Basically,
all the clustering algorithms can be divided into two
categories: partitional clustering and hierarchical clus-
tering. Partitional clustering algorithms determine all
clusters at once without hierarchical merging or di-
viding process. K-means clustering is most common
method in this category [26]; K is the empirical pa-
rameter. Basically, it randomly assigns instances to K
clusters. Next, new centroid for each of the K clus-
ters and the distance of all items to these K centroids
are calculated. Items are re-assigned to the closest cen-
troid and the whole process is repeated until cluster as-
signments are stable. Hierarchical clustering generates
a hierarchical structure of clusters which may be rep-
resented in a structure called a dendrogram. The root
of the dendrogram consists of a single cluster contain-
ing all the instances, and the leaves correspond to indi-
vidual instances. Hierarchical clustering can be further
divided into two types according to whether the tree
structure is constructed by following agglomerative or
divisive approach. Agglomerative approach works in
the bottom-up manner, it recursively merges smaller
clusters into larger ones till some stoping condition is
reached. Algorithms based on divisive (or top-down)
approach begin with the whole set and then recursively
split this set into smaller ones till some stoping condi-
tion is reached.

We have chosen the hierarchical clustering method
to learn the new hierarchical schema for music in-
struments, since it fits our scenario well. There are
many options to compute the distance between two
clusters. The most common methods are the follow-
ing [40]: Single linkage (nearest neighbor), Com-
plete linkage (furthest neighbor), Unweighted pair-
group method using arithmetic averages (UPGMA),
Weighted pair-group method using arithmetic averages
(WPGMA) [39], Unweighted pair-group method using
the centroid average (UPGMC), Weighted pair-group
method using the centroid average (WPGMC), Ward’s
method.

To complete the above definitions of a distance mea-
sure between two clusters, we also have to define the
distance between their instances or centroids. Here are
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some most common distance measures between two
objects:

1. Euclidean: Usual square distance between the
two vectors. Disadvantages: not scale invariant,
not for negative correlations

dxy =
√∑

(xi − yi)2.

2. Manhattan: Absolute distance between the two
vectors.

dxy =
∑

|xi − yi|.

3. Maximum: Maximum distance between any two
components of x and y

dxy = max |xi − yi|.

4. Canberra: Canberra distance examines the sum
of series of a fraction differences between coor-
dinates of a pair of objects. Each term of frac-
tion difference has value between 0 and 1. If one
of coordinates is zero, the term corresponding to
this coordinate become unity regardless the other
value, thus the distance will not be affected; if
both coordinates are zero, then the term is de-
fined as zero.

dxy =
∑ |xi − yi|

|xi|+ |yi|
.

5. Pearson correlation coefficient (PCC) is a corre-
lation-based distance. It measures the degree of
association between two variables.

ρxy =
[cov(X,Y )]2

var(X)var(Y )
, dxy = 1− ρxy

where cov(X,Y ) is the covariance of the two
variables, var(X) and var(Y ) – the variance of
each variable.

6. Spearman’s rank correlation coefficient is an-
other correlation based distance.

ρxy = 1− 6
∑

d2i
n(n2 − 1)

, dxy = 1− ρxy

where di = xi − yi is the difference between the
ranks of corresponding values xi and yi, and n
is the number of values in each data set (same
for both sets). Rank is calculated in the following

way: 1 is assigned to the smallest element of each
data, 2 to the second smallest element, and so on;
the average ranking is calculated if there is a tie
among different elements.

It is critical to choose an appropriate distance mea-
sure for objects in a musical domain because differ-
ent measures may produce different shapes of clusters
which represent different schema of instrument fam-
ily. Different features also require the appropriate mea-
sures to be chosen in order to give better description
of feature variation. The inappropriate measure could
distort the characteristics of timbre which may cause
the incorrect clustering.

10.2. Evaluation of different clustering algorithms
for different features

As we can see, each clustering method has its own
different advantage and disadvantage over others. It
is a nontrivial task to decide which one is the most
appropriate method for generating the hierarchical in-
strument classification structure. Not only the specific
cluster linkage method needs to be decided in the
hierarchical clustering algorithms, but also the good
distance measurement has to be chosen in order to
generate the good schema that represents the actual
relationships among those instruments. We designed
quite intensive experiments with the “cluster” pack-
age in R system [37]. The R package provides two
hierarchical clustering algorithms: hclust (agglom-
erative hierarchical clustering), and diana (divisive
hierarchical clustering). Table 7 shows all the clus-
tering methods that we tested. We evaluated six dif-
ferent distance measurements (Euclidean, Manhattan,
Maximum, Canberra, Pearson correlation coefficient,
and Spearman’s rank correlation coefficient) for each
algorithm. For the agglomerative type of clustering
(hclust), we also evaluated seven different cluster
linkages that are available in this package: Ward, single
(single linkage), complete (complete linkage), average
(UPGMA), mcquitty (WPGMC), median(WPGMA),
and centroid (UPGMC).

We have chosen the middle C pitch group which
contains 46 different musical sound objects. We have
extracted three different feature sets (MFCC [24],
spectral flatness coefficients [23], and harmonic peaks
[23]) from those sound objects. Each feature set pro-
duces one dataset for clustering. Some sound objects
belong to the same instrument. For example, “ctrum-
pet” and “ctrumpet harmonStemOut” are objects pro-
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Table 7
All distance measures and linkage methods tested for agglomerative
and divisive clustering

Clustering algorithm Cluster linkage Distance measure

hclust average 6 distance metrics
hclust centroid 6 distance metrics
hclust complete 6 distance metrics
hclust mcquitty 6 distance metrics
hclust median 6 distance metrics
hclust single 6 distance metrics
hclust ward 6 distance metrics
diana N/A 6 distance metrics

duced by the same instrument: trumpet. We have pre-
served these particular object labels in our feature
database without merging them as the same label be-
cause they could have very different timbre quality
which the conventional hierarchical structure ignores.
We have tried to discover the unknown musical in-
strument group information solely by the unsupervised
machine learning algorithm, instead of applying any
human guidance. Each sound object was segmented
into multiple 0.12s frames and each frame was stored
as an instance in the testing dataset. Since the segmen-
tation is performed with overlap of 2/3 of the frame,
there were totally 2884 frames from the 46 objects in
each of the three feature datasets.

When our algorithm finishes the clustering job, a
particular cluster ID is assigned to each frame. Theo-
retically, one may expect the same cluster ID to be as-
signed to all the frames of the same instrument sound
object. However, the frames from the same sound ob-
ject are not uniform and have variations in their fea-
ture patterns as the time evolves. Therefore, cluster-
ing algorithms do not perfectly identify them as the
same cluster. Instead, some frames are assigned into
other groups where majority of the frames come from
other instrument sounds. As a result, multiple (differ-
ent) cluster IDs are assigned to the frames of the same
instrument object.

Our goal is to cluster the different instruments into
the groups according to the similarity of timbre rel-
evant features. Therefore, one important step of the
evaluation is to check if a clustering algorithm is able
to cluster most frames of an individual instrument
sound into one group. In other words, a clustering algo-
rithm should be able to differentiate most of the frames
of one instrument sound from the others. It is evaluated
by calculating the accuracy of a cluster ID assignment.
We use the following example to illustrate this eval-
uation process. A hierarchical cluster tree Tm is pro-

Table 8
Format of the contingency table derived from clustering result

Clust1 Clustj Clustn

Instr1 x11 · · · x1j · · · x1n

· · · · · · · · · · · · · · · · · ·
Instri xi1 · · · xij · · · xin

· · · · · · · · · · · · · · · · · ·
Instrn xn1 · · · xnj · · · xnn

duced by a clustering algorithm Am. There are totally
n instrument sound objects in the dataset (n = 46).
The clustering package provides function cutree to cut
Tm into n clusters. One of these clusters is assigned
to each frame. Table 8 shows a contingency table (xij

represent numbers) derived from the clustering results
after the cutree is applied. It is a n× n matrix, where
xij is the number of frames of instrumenti that are
labeled by clusterj , and xij ≥ 0.

In order to calculate the accuracy of the cluster as-
signment, we need to decide which cluster ID cor-
responds to which instrument object. If cluster k is
assigned to instrumenti, xik is the number of cor-
rect assignments for instrumenti, the accuracy of the
clustering for instrumenti is βi = xik/(

∑n
j=1 xij).

During clustering process, each frame of the sound
object is clustered into one particular group, and the
group ID (i.e. instrument) is assigned to this frame.
For each row, the maximum value is found among n
columns, and next the column corresponding to the
position of this maximum becomes the class label for
frames represented in this row. However, it may hap-
pen that the maximum value is found in the same col-
umn also for other rows, and then the same group
ID is linked to two different sound objects, which
means these two different instrument sounds could not
be distinguished by this particular clustering scheme.
Clearly, we would like to avoid such an ambiguity. On
the other hand, we have to cluster many frames of one
sound object into a single group. Therefore, we would
need permutations to calculate the theoretic best solu-
tion for the whole table, but such a large number of
computations cannot be performed.

The overall accuracy for the clustering algorithm
Am is the average accuracy of all the instruments
β = (

∑n
i=1 βi)/n. To find the maximum β among all

possible cluster assignments to instruments, we should
permute this matrix in order to find the maximum ac-
curacy for the whole matrix (for each row of matrix,
there are multiple values that could be selected among
n columns), but it is not applicable to perform such
a large number of calculations. This is why we have
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Table 9
Evaluation result of hclust algorithm

Feature Method Metric β̄ w Score

Flatness Coefficients Ward Pearson 87.3% 37 32.30
Flatness Coefficients Ward Euclidean 85.8% 37 31.74
Flatness Coefficients Ward Manhattan 85.6% 36 30.83
MFCC Ward Kendall 81.0% 36 29.18
MFCC Ward Pearson 83.0% 35 29.05
Flatness Coefficients Ward Kendall 82.9% 35 29.03
MFCC Ward Euclidean 80.5% 35 28.17
MFCC Ward Manhattan 80.1% 35 28.04
MFCC Ward Spearman 81.3% 34 27.63
Flatness Coefficients Ward Spearman 83.7% 33 27.62
Flatness Coefficients Ward Maximum 86.1% 32 27.56
MFCC Ward Maximum 79.8% 34 27.12
Flatness Coefficients McQuitty Euclidean 88.9% 33 26.67
MFCC ward Average 87.3% 30 26.20

chosen maximum xij in each row to approximate the
optimal β.

Since it is possible to assign the same cluster to mul-
tiple instruments, we have taken the number of clus-
ters as well as accuracy into account. The final mea-
surement to evaluate the performance of clustering is
scorem = β · w, where w is the number of clusters,
w ≤ n. This measure reflects how well the algorithm
clusters the frames from the same instrument object
into the same cluster. It also reflects the ability of algo-
rithm to separate instrument objects from each other.

In the experiments, we used two hierarchical cluster-
ing algorithms, hclust and diana. Table 9 presents
14 results which yielded the highest score among 126
experiments based on hclust algorithm.

From the results, the Ward linkage outperforms
other methods and it yields the best performance when
Pearson distance measure is used on the Flatness Co-
efficients feature dataset.

Table 10 shows the results from diana algorithm.
In this algorithm, Euclidean yields the highest score on
the mfcc feature dataset.

During the clustering process, we cut the hierarchi-
cal clustering result at a certain level, when obtain-
ing groups which could represent instrument objects.
If most of the frames from the same instrument object
are clustered into one group, then this algorithm is se-
lected to generate the hierarchical tree.

When we compare the two algorithms (hclust and
diana), hclust yields better clustering results than
diana. Therefore, we chose agglomerative clustering
algorithm to generate the hierarchical schema for mu-
sical instruments, using Ward as the linkage method,

Pearson distance measure as the distance metric, and
Flatness Coefficients as the feature dataset to perform
clustering analysis.

11. New hierarchical tree

Figure 21 shows the dendrogram result generated by
the hierarchical clustering algorithm we chose (i.e. ag-
glomerative clustering), as mentioned in Section 10.2.
From this new hierarchical classification, we discover
some instrument relationships which are not repre-
sented in the traditional schemas.

A musical instrument can produce sounds with quite
different timbre qualities when different playing tech-
niques are applied. One of the common techniques
is muting. A mute is a device fitted to a musical in-
strument to alter the sound produced. It usually re-
duces the volume of the sound as well as affects the
timbre. There are several different mute types for dif-
ferent instruments. The most common type used with
the brass is the straight mute – a hollow, cone-shaped
mute that fits into the bell of the instrument. This re-
sults in a more metallic, sometimes nasal sound, and
when played at loud volumes can result in a very pierc-
ing note. The second common brass mute is the cup
mute. Cup mutes are similar to straight mutes, but at-
tached to the end of the mute’s cone is a large lip that
forms a cup over the bell. The result is removal of
the upper and lower frequencies and a rounder, more
muffled tone. In the case of string instruments of the
violin family, the mute takes the form of a comb-
shaped device attached to the bridge of the instru-
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Table 10
Evaluation result of Diana algorithm

Feature Metric β̄ w Score

Flatness Coefficients Euclidean 77.3% 24 18.55
Flatness Coefficients Kendall 75.7% 23 17.40
Flatness Coefficients Manhattan 76.8% 25 19.20
Flatness Coefficients Maximum 80.3% 23 18.47
Flatness Coefficients Pearson 79.9% 26 20.77
MFCC Euclidean 78.5% 29 22.78
MFCC Kendall 77.2% 27 20.84
MFCC Manhattan 77.7% 26 20.21
MFCC Pearson 83.4% 25 20.86
MFCC Spearman 81.2% 24 19.48

Fig. 21. Clustering result from hclust algorithm with Ward linkage method, Pearson distance measure, and Flatness Coefficients used as the
feature set.

ment, dampening vibrations and resulting in a “softer”
sound.

In the hierarchical structure shown in Fig. 21, “trum-
pet” and “ctrumpet harmonStemOut” represent two
different sounds produced by the trumpet. “ctrumpet
harmonStemOut” is produced when a particular mute
is applied, called Harmon mute (different from the
common straight or cup mutes). It is a hollow, bul-
bous metal device placed in the bell of the trumpet.
All air is forced through the middle of the mute. This
gives the mute a nasal quality. Protruding at the end
of the device, there is a detachable stem extending

through the centre of the mute. The stem can be re-
moved completely or can be inserted to varying de-
grees. Name of this instrument sound object shows
whether the stem is extended or completely removed,
which darken the original piercing, strident timbre
quality.

From the spectra of various sound objects (Fig. 22),
we can clearly observe big differences between them.
The spectra also show that “Bach trumpet” has more
similar spectral pattern to “trumpet”. The relationships
between C trumpet, C trumpet muted (Harmon, stem
out) and Bach trumpet are accurately represented in the
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Fig. 22. Spectrum comparison of different instrument objects. On the left hand side: C Trumpet, C Trumpet muted (Harmon, Stem out) and Bach
Trumpet; on the right hand side: French horn, French horn muted, bassoon.

new hierarchical schema. Figure 21 shows that “ctrum-
pet” and “bachtrumpet” are clustered into the same
group. “ctrumpet harmonStemOut” is clustered in one
single group instead of merging with “ctrumpet” since
it has a very unique spectral pattern. The new schema
also discovers the relationships among “French horn”,
“French horn muted” and “bassoon”. Instead of clus-
tering two “French horn” sounds in one group as the
conventional schema does, bassoon is considered as
the sibling of the regular French horn. “French horn
muted” is clustered in another different group together
with “English Horn” and “Oboe” (the extent of the dif-
ference between groups is measured by the distance
between the nodes in the hierarchical tree).

According to this result, the new schema is more
accurate than the traditional schema, because it repre-
sents the actual similarity of timbre qualities of mu-
sical instruments. Not only it better describes the dif-
ferences between instruments, but it also distinguishes

the sounds produced by the same instrument that have
quite different timbre qualities due to different playing
techniques.

12. Experiments and evaluation

In order to evaluate the new schema, we developed
the cascade classification system based on the multi-
label classification method and tested it with the new
schema, as well as with the two previous conventional
hierarchical schemas: Hornbostel-Sachs and Playing
Method. The system used MS SQLSERVER2005
database system to store training dataset and MS
SQLSERVER analysis server as the data mining server
to build decision tree and process the classification re-
quest.

Training data The audio files used in this research
consist of stereo musical pieces from the McGill Uni-
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versity Master Samples (MUMS, [30]). Each file has
two channels: left channel and right channel, in .au
(or .snd) format. These audio data files are treated as
mono-channel, where only left channel is taken into
consideration, since successful methods for the left
channel can also be applied to the right channel, or any
channel if more channels are available. 2917 single in-
strument sound files were used, representing 45 differ-
ent instruments.

Each sound stands for one note played by a spe-
cific instrument. Many instruments can produce differ-
ent timbres when they are played using different tech-
niques. Therefore, sounds of various pitch and artic-
ulation were investigated for each of these 45 instru-
ments.

Power spectrum and 33 spectral flatness coefficients
were extracted from each frame of these single instru-
ment sounds, according to the equations described by
the MPEG-7 standard [23]. The frame size was 120
ms and the overlap between two adjacent frames was
80ms, to reduce the information loss caused by win-
dowing function (therefore, the hop size was 40ms).
The total number of frames for the entire feature
database reaches to about one million, since each
sound is analyzed in many frames. For instance, the in-
strument sound which only lasts three seconds is seg-
mented into 75 overlapped frames. The classifier is
trained by the obtained feature database.

Testing data 308 mixed sounds were synthesized by
randomly choosing two single instrument sounds from
2917 training data files. Spectral flatness coefficients
were extracted from the frames of mixes, in order to
perform instrument family estimation on the higher
level of the hierarchical tree. After reaching the bot-
tom level of the hierarchical tree, we used the power
spectrum from the frames representing mixes, in or-
der to match against the reference spectral database.
Since the spectrum matching is performed in a small
subgroup, the computation complexity is reduced. The
same analyzing frame size and hop size were used for
the mixes as in the case of training data. We use preci-
sion, recall, and F-score to evaluate the performance of
classifiers. The definitions of recall and precision are
shown in Fig. 23. I1 is the number of actual instru-
ments playing in the analyzed sound. I2 is the num-
ber of instruments estimated by the system. I3 is the
number of correct estimations.

Recall is the measurement to evaluate the recogni-
tion rate and precision is to evaluate the recognition ac-
curacy. The F-score is often used in the field of infor-

Fig. 23. Precision and recall.

mation retrieval for measuring search, document clas-
sification, and query classification performance. It is
the harmonic mean of precision and recall. F-score is
calculated as

F-score =
2× precision× recall

precision+ recall
.

The average recall, precision and F-score of all the
308 sounds estimations were calculated to evaluate
each method.

Since timbre estimation was performed for index-
ing segments (smoothing window), containing multi-
ple frames, as described in Section 6, the measures
mentioned above were calculated for indexing seg-
ments of size 1 second.

K-Nearest Neighbor (KNN) [18] was used as the
classifier, with k = 3. As shown in Table 11, in Ex-
periment 1 we applied the multiple label classification
[16] based on features representing spectral flatness
coefficients only. In Experiment 2 we used the power
spectrum matching method, instead of features [15].
In Experiment 3 and Experiment 4 we used two tra-
ditional hierarchical structures (Hornbostel-Sachs and
play method) in order to perform cascade classification
based on both the power spectrum and spectral flatness
coefficients. In Experiment 5 we applied the new hi-
erarchical structure as the basis of the cascade system.
The indexed window size for all the experiments is one
second, and the output of total number of estimations
for each indexed window is controlled by confidence
threshold λ = 0.4, which is the minimum average con-
fidence of instrument candidates.

Figure 24 shows that generally the cascade clas-
sification improves the recall compared to the non-
cascade methods. The non-cascade classification based
on spectrum-match (Experiment 2) shows higher recall
than the cascade classification approaches based on the
traditional hierarchical schema (Experiment 3 and Ex-
periment 4). However, the cascade classification based
on the new schema learned by the clustering analysis
(Experiment 5) outperforms the non-cascade classifi-
cation. It increases the recall by 8 percent points, preci-
sion by 12 percent points and general F-score by 9 per-
cent points. This shows that the new schema yields sig-
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Table 11
Comparison between non-cascade classification and cascade classification with different hierarchical schemas

Experiment Classification method Description Recall Precision F-Score

1 Non-Cascade Feature-based 64.3% 44.8% 51.4%
2 Non-Cascade Spectrum-Match 79.4% 50.8% 60.7%
3 Cascade Hornbostel-Sachs 75.0% 43.5% 53.4%
4 Cascade play method 77.8% 53.6% 62.4%
5 Cascade machine Learned 87.5% 62.3% 69.5%

Table 12
Classification results of 3-instrument mixtures with different algorithms

Experiment Classifier Method Recall Precision F-Score

1 Non-Cascade single-label based on sound separation 31.48% 43.06% 36.37%
2 Non-Cascade feature-based multi-label classification 69.44% 58.64% 63.59%
3 Non-Cascade spectrum-match multi-label classification 85.51% 55.04% 66.97%
4 Cascade (Hornbostel-Sachs) multi-label classification 64.49% 63.10% 63.79%
5 Cascade (playmethod) multi-label classification 66.67% 55.25% 60.43%
6 Cascade (machine learned) multi-label classification 63.77% 69.67% 66.59%

Fig. 24. Comparison between non-cascade classification and cascade
classification with different hierarchical schemas. X-axis is the ex-
periment number described in Table 12.

nificant improvement in comparison to the other two
traditional schemas. Also, since the hierarchical tree
has more levels, the size of the subset on the bottom
level is reduced to a very small size, which signifi-
cantly reduces the cost of spectrum matching.

We evaluated the classification system by the mixed
sounds which contain two single instrument sounds. In
the real world recordings, there could be more than two
instruments playing simultaneously, especially in the
orchestra music. Therefore, we also created 49 poly-
phonic sounds by randomly selecting three different
single instrument sounds and mixing them together.
Next, we tested those three-instrument mixes, using
various classification methods (Table 12).

As we can see from Table 12, the lowest precision
and recall is obtained for the algorithm based on sound
separation, i.e. separating sounds of mixes and then
performing instrument estimation on separated sounds.

This is because there is no much information left in the
sound mix for the further classification of the third in-
strument after two signal subtractions corresponding to
the first two instrument estimations are made. The cas-
cade method based on multi-label classification again
yields high recall and precision of results.

This experiment shows the robustness and effective-
ness of the algorithm for the polyphonic sounds which
contain more than two timbres. As the dendrogram in
Fig. 21 shows, the new schema has more hierarchical
levels and looks more complex and obscure to users.
However, we only use it as the internal structure for the
cascade classification process, and we do not use it in
the query interface. Therefore, when the user submits
a query to QAS defined in the user’s semantic struc-
ture (e.g. searching instrument sounds which are close
in Hornbostel-Sachs classification, or with respect to
the play method), system translates it to the internal
schema (based on clustering). After the estimation is
done, the answer is converted back to the user seman-
tics. The user does not need to know the difference be-
tween French horn and French horn muted since only
French horn is returned by the system as the final esti-
mation result. The internal hierarchical representation
of musical instrument sound classification is used as
an auxiliary tool, assisting answering user’s queries.
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