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Abstract. During deep brain stimulation (DBS) treatment of Parkinson disease, the target of the surgery is the subthalamic
nucleus (STN ). This anatomical structure is small (9 × 7 × 4 mm) and poorly visible using Computer Tomography (CT ) or
Magnetic Resonance Imaging (MRI) scans.

Because of that, a multi-electrode micro recording system is used intra surgically for better localization of the target nucleus.
This paper presents five different analytical methods, that can be used to construct an autonomic system which can aid neurosur-
geons in precise localization of the Subthalamic Nucleus (STN ). Such system could be used during surgery in the environ-
ment of the operation theater. Described methods take as input signals recorded from the micro electrodes. Their result in turn
allows one to tell which from the recorded signals comes from the STN . First method bases on the recorded action potentials,
i.e. on electrical activity of neurons that are near electrode’s recording tip. Second utilizes root mean square of recorded signals.
Third takes into account amplitude of the background noise present in the recorded signal. The last two methods examine Low
Frequency Background (LFB) and High Frequency Background (HFB).
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1. Introduction

Parkinson disease (PD) is chronic and advancing
movement disorder. The risk factor of the disease in-
creases with the age. As the average human life span
elongates also the number of people affected with PD
steadily increases. Because of the nature of the ill-
ness – affecting only patient’s movement without im-
pairment of the intelligence and/or consciousness –
it has a very high social cost. People as early as in
their 40s, having unaffected mental capabilities are se-
riously disabled and require continuous additional ex-
ternal support. The main treatment for the disease is
pharmacological one. Unfortunately, in many cases the
effectiveness of the treatment decreases with time and
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some others patients do not tolerate anti PD drugs well.
In such cases, after fulfilling certain medical require-
ments patients are qualified for the surgical treatment
of the PD disease. This kind of surgery is called Deep
Brain Stimulation (DBS). Goal of the surgery is the
placement of the permanent stimulating electrode into
the STN nucleus. This nucleus is a small – deep in
brain placed – structure that does not show well in CT
or MRI scans. Stimulating electrode disrupts overac-
tive neural circuits that are responsible for the form-
ing of the rigidness typical for the advanced stage of
the PD disease. Having only an approximate location
of the STN , during DBS surgery a set (3∼5) of par-
allel micro electrodes are inserted into patient’s brain.
Electrodes are directed towards expected location of
the target nucleus. At each desired depth they record
electrophysiological activity of surrounding brain tis-
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sue. Micro electrodes advance until at least one of
them passes through the nucleus, determining by this
its dorsal1 and ventral2 borders. All this is possi-
ble because STN has distinct from surrounding tissue
physiology and yields specific micro electrode record-
ings. It still requires however an experienced neu-
rologist/neurosurgeon to tell whether recorded signal
comes from the STN or not [1].

When the trajectory to the STN and its depth are
in this way obtained, electrodes are withdrawn to its
level. Then the ones that reached it in an optimal way
are one by one briefly switched from recording to stim-
ulation mode. While stimulation is active, patients con-
dition is monitored and effectiveness of treatment as-
sessed. By this procedure optimal electrode is deter-
mined and later all micro electrodes can be withdrawn.
Subsequently, using the trajectory of the optimal mi-
cro electrode, the final and permanent stimulating elec-
trode is placed.

Required experience of the neurologist/neurosur-
geon can cause certain difficulties. That is why it is
so important to provide some objective and human in-
dependent way to discriminate recorded signals. The
goal is to provide the human independent software that
would be able to assess in a short time whether given
recording has originated inside of the STN or not.

Analytical methods described in this paper have
been devised with exactly that purpose. Taking as in-
put recordings made by set of electrodes at subse-
quent depths they provide information as to which of
the electrodes and at which depth passed through the
STN .

2. Related work

2.1. Signal filtering

In micro electrode recorded signals filtering is nec-
essary for various reasons. Different methods require
different kind of raw signal preprocessing and filter-
ing. Most commonly for filtering used are Fast Fourier
Transform (FFT ) and Discrete Wavelet Transform
(DWT ) methods. FFT (Discrete Fourier Transform in
case of sampled data) can be used for filtering in many
application, it has however some more or less serious
disadvantages.

1Top.
2Bottom.

2.1.1. FFT
FFT is based on a sine wave. This implies that it is

best suited for stationary signals, i.e. signals that repeat
forever without a change in its periodicity. Meanwhile
recordings acquired from the brain tissue are not sta-
tionary. One might even say that in some brain areas
if neuronal activity starts to behave in a synchronous
and stationary way then serious neurological condition
might be taking place [2].

Because trigonometrical functions are not timed lo-
calized, it is only possible to say what frequencies are
dominant in a surveyed signal. It is not possible to tell
when these frequencies occurred in time. This comes
from FFT’s assumption of stationarity of the signal.

When FFT is used for filtering, first the transforma-
tion goes forward into frequency domain, later coeffi-
cients corresponding to desired frequencies are thresh-
olded and finally the inverse transform goes back to
the time domain. As all above is done using sine wave,
the resulting filtered signal also acquires some sine like
properties. It is especially undesired when one is to an-
alyze and compare the shapes of the action potentials.

2.1.2. DWT
Wavelet transforms do not assume stationarity of the

signal. It comes from the fact that wavelet base func-
tion is also time localized – not stationary. Because
of this, the information regarding time in which cer-
tain frequencies are present is preserved. This feature
caused DWT to become frequently used in medical
signal analysis [3–6]. From this, looking at specific
wavelet transform one can easily identify correspond-
ing sample ranges in raw unfiltered signal [7]. FFT is
based on a sine wave, in the case of DWT there are
many functions that can be used as a base wave. In [8]
authors suggest Daubechies D4 wavelet. This wavelet,
having its shape akin to simplified spike shape is es-
pecially useful in analyzing neurobiological data. Be-
cause of that, in this paper wavelet transforms have
been used for filtering.

Discrete Wavelet Transform (DWT ) is done both in
forward and reverse way in steps. Each step in forward
transform gives coefficients corresponding to different
frequency ranges. As each stage of the transform it is
required that input signal has even number of samples.
From this comes an obvious requirement that raw input
signal has to have length which is a certain power of 2.
Of course, the longer is the input signal the more steps
of the transform can be made and the more detailed
results could be obtained. Assume that raw signal has
n samples (numbered 0 to n − 1) and that it has been
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Fig. 1. DWT schema.

sampled with f frequency. From Nyquist theorem [9]
the frequency ranges present in the signal are in range
(0, f

2 ).
After the 1st step of the transform, coefficients in

range 〈0, n
2 − 1〉 reflect frequencies (0, f

4 ). They are
called cA1 – average of the signal for the 1st level.

Range 〈n2 , n − 1〉 reflects frequencies ( f4 ,
f
2 ) and it

is in analogous way called cD1 – detail of the signal
for the 1st level.

Both cA1 and cD1 sets of coefficients contain n
2 ele-

ments, so each element of cA1 references two elements
of the original signal. This way, while having only half
of the elements, they still come from the whole length
of the original data. Exactly the same rule takes place
in case of the cD1 coefficients.

Second level takes cA1 as an input and produces di-
vision of (0, f

4 ): range cA2 is for frequencies (0, f
8 )

and cD2 is for frequencies ( f8 ,
f
4 ).

Declaring the raw input signal as A0, one could say
that level j is produced as the step forward from Aj−1:
cAj represents frequencies (0, f

2(j+1) ) and cDj repre-
sents frequencies ( f

2(j+1) ,
f
2j ).

There is a little point in further transforming data of
length 4 or less. Having stated above, one can obtain
the maximum possible level of transformation of a sig-
nal with n samples, it is log2 n− 2.

First two steps of the DWT are shown on Fig. 1.
On the Figs 2–6, sample of microelectrode recorded

signal is shown together with its first two DWT steps.
It is immediately obvious that original signal shape
is in some way maintained in cA1 (Fig. 3) and cA2

(Fig. 5).

– DWT preserved information about occurrence
events in time

Fig. 2. Raw microelectrode recording (0–12 KHz).

Fig. 3. cA1 (0–6 KHz).

Fig. 4. cD1 (6–12 KHz).

Fig. 5. cA2 (0–3 KHz).

Fig. 6. cD2 (3–6 KHz).

– noise above 6KHz seems to be insignificant
– noise in range 3∼6KHz does distort the signal
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2.2. Signal’s normalization

The need for normalization of the recorded signals
comes from several reasons.

1. There is no guarantee that at each depth the length
of the recording would be the same. In our data set
there are 9685 recordings, 8931 of them (92 %) have
length of 10 s, 599 (6 %) are shorter and finally 155
(2 %) are longer than 10 s.

2. Each electrode is used only for one pass through
the brain tissue so in each trajectory different electrode
is used. While electrodes are in general uniform as to
their electrical properties, some small differences can
still be present.

3. In different surgeries, different amplification fac-
tor can be set in the recording device.

First case – acting on a single recording level – im-
plies that method relying on the power of the signal
(Spike based, RMS, LFB and HFB) must be nor-
malized in such way that from a given recording they
produce power proportional to 1s of its length. Without
that comparing power yielded from i.e. 10 s and 20 s
long signals would be meaningless.

Last two reasons – acting on the electrode level –
normalizes amplitude of data calculated from full pass
of a single electrode. Normalization must allow one
to safely compare signals recorded by different elec-
trodes with different amplification factors.

During the DBS surgery electrode starts its record-
ing at level −10000 (10 mm above predicted STN
location) and from there follows its tract for another
15 mm to the level +5000 (5 mm below predicted
STN location). There are also cases when electrode is
advanced even beyond level of +5000. Important fact
is that first 5 mm of the tract produces relatively un-
form recordings (low amplitude, little or no spiking).
Assume now that a specific method mth taking as in-
put vector of data recorded at subsequent depths D
produces a vector of characteristic coefficients C.

mth(d−10000, . . . , d+5000) = (c−10000, . . . , c+5000)

(1)

The base value of C is then defined as

Cbase =
c−10000 + · · ·+ c−6000

5
(2)

and, finally the normalized C has form

CNR =

(
c−10000

Cbase
, . . . ,

c+5000

Cbase

)
(3)

All the results from the methods presented in fol-
lowing sections are normalized according to the length
of the recording. All results from the percentile, RMS,
LFB and HFB methods are also normalized using
Eqs (1)–(3). Spike based method – described in fol-
lowing chapter – does not require electrode level nor-
malization of the resulting coefficients. This is due to
the fact, that it does rely on spike occurrence which is
not so much dependant on the electrode sensitivity or
amplification level. Moreover, in not uncommon situa-
tion when at first 5 depths electrode records no spikes,
the Cbase value would be 0 and CNR could not be cal-
culated at all.

2.3. Analysis of the action potentials – spikes

It is possible to detect spikes occurring in cells be-
ing within radius of around 50 μm from the electrode’s
recording tip [10]. Spikes from far neurons may have
lower amplitude and be wider. Change of width is
caused by the fact that with increasing distance more
and more of the spike’s high frequency components are
lost. Distant neurons contribute to the noise present in
the recorded signals. Because of that, spikes coming
from two neurons of the same type, with different dis-
tance from the electrode can be recorded with both dif-
ferent amplitude and width. Depending on the brain re-
gion, within radius of 50 μm one might find well over
100 neurons. This neurons can produce spikes in dif-
ferent patterns and frequencies. It is also not uncom-
mon that couple of neurons produce spikes within few
milliseconds of each other and that the recorded spikes
would overlap. All above makes the task of detecting
and sorting of the spikes particulary difficult.

2.3.1. Objectives
The STN nucleus is a structure within brain that

characterizes by large amounts of densely packed neu-
rons [1,2]. It might be so expected that power of the
signal that is derived from spike occurrences would re-
flect that feature. Power of such signal should be there-
fore higher in the STN than in other brain areas being
near it (i.e. Striatum, Dorsal Thalamus, Zona Incerta).
Comparing changes of the power for electrodes from
given set, on different depths, should provide some in-
formation as to which of the electrodes and on what
depth traversed the STN .

2.3.2. High pass filtering
Spikes can be detected using amplitude or deriva-

tive thresholding. In case of derivative methods one
looks for the first derivative being above or below cer-
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Fig. 7. Recording before DWT hight pass filtering.

Fig. 8. Recording after DWT hight pass filtering.

tain threshold. Spike detection is in this way based on
its slope. Unfortunately it is difficult to calculate such
thresholds in an automatic unsupervised way. Methods
that base on amplitude are easier to implement. For
these methods the threshold can be quite easily cal-
culated from the recorded signal. Amplitude approach
requires however that the signal has to be firstly high
pass filtered.

High pass filtering is done by removing all frequen-
cies below 375 Hz. Having the original signal recorded
in ranges (0, 12)KHz we have cA1 representing fre-
quencies below 6KHz, cA2 for frequencies below
3KHz . . . and finally cA5 that represents frequencies
below 375Hz. Having done all five steps of DWT all
cA5 coefficients are set to 0 and then five consecu-
tive inverse DWT are made. Results of such filtering
are shown on Figs 7 and 8. Test sample is a 100 ms
long subset of real, MER recorded signal. Signal con-
tains 6 spikes with high amplitude. It is clearly appar-
ent that DWT filtering removed low frequency oscilla-
tions without affecting neuronal spikes.

2.3.3. Low pass filtering
In previous sections it has been stated that within the

recording radius of the electrode over 100 neurons can
be found. Most of these cells are electrically active ei-
ther by their spikes or by synapse potentials. All this
activity contributes to the noise that is always abundant
in MER recordings. The more neurons are nearby, the
bigger is the noise amplitude. While this feature can it-
self carry significant information (see Sections 2.5 and
2.6) in case of spike detection and subsequent sorting it

Fig. 9. Recording before DWT low pass filtering.

Fig. 10. Recording after DWT low pass filtering.

is just a distortion and should be removed [11]. In this
case, filtering is also done by means of DWT. Noise
frequencies are here very close to frequencies present
in spikes and because of that they can not be removed
by simple zeroing of certain coefficients. Such simple
approach, while removing the unwanted noise would
also distort spikes.

The signal is instead a decomposed threefold and
at each step some hard thresholding is done. At the
first level, the detail coefficients cD1 representing fre-
quencies in range 6KHz∼12KHz are hard thresholded
with value 4σn. At the 2nd level, the detail coefficients
cD2 representing frequencies in range 3KHz–6KHz
are also hard thresholded with value 4σn. Finally, at
the 3rd level, the detail component cD3 representing
range 1500Hz–3KHz is hard thresholded with value
2σn. The value σn is given by Eq. (6). Such equa-
tion, as pointed in [12] has some advantages over the
classical formula that uses average of squares. Mainly,
the traditional formula takes into account all samples
and is thus strongly affected by high amplitude values
that comes form spikes. Formula for hard tresholding
x with value λ is given by Eq. (4).

htresh(x, λ) =

{
0 if |x| ≤ λ
x otherwise (4)

Later the transformation process is reversed and fil-
tered signal is thus obtained. Figures 9 and 10 presents
a 50 ms wide signal sample before and after the fil-
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tering. Low pass filtering considerably improves spike
detection and subsequent sorting processes.

2.3.4. Spike detection
Assuming that unwanted frequency components

have already been filtered out from the signal, one can
attempt to detect spikes using amplitude analysis [13].
Assuming that xk denotes kth sample of input signal,
threshold is Vthr set by Eq. (5).

Vthr = 4 σ (5)

where

σ =
median(|x1|, . . . , |xn|)

0.6745
(6)

Necessary condition for a spike to be detected is that
al least one of its samples exceeds Vthr. This condi-
tion while being a must is certainly not a sufficient
one. Neural spike has to fit into certain shape range.
To ensure it, additional conditions must be fulfilled,
they specify amplitude ranges into which spike ampli-
tude must not enter. As spikes can be recorded both in
normal and reverted polarity, two sets of such zones
must be defined. This zones of forbidden amplitude are
shown on Fig. 11.

In case of down-up spikes (see Fig. 11a) the −Vthr

amplitude is shown as thin horizontal line. Assuming
that amplitude is below −Vthr at time t0 then spike
occurs between t0−0.5 ms and t0+1.1 ms if fulfilled
are conditions (7)–(10).

∀(t0 − 0.5ms < t < t0 − 0.4ms) f(t) > −Vthr

2
(7)

∀(t0 + 0.4ms < t < t0 + 1.1ms) f(t) > −Vthr

2
(8)

∀(t0 − 0.5ms < t < t0 − 0.3ms) f(t) <
Vthr

2
(9)

∀(t0 + 1.0ms < t < t0 + 1.1ms) f(t) <
Vthr

2
(10)

In case of up-down spikes (see Fig. 11b) the Vthr am-
plitude is also shown as thin horizontal line. Condi-
tions (7)–(10) have to be here modified in a simple way
to reflect reversed polarity.

2.3.5. Shape clustering
After spike detection it is a good practice to sep-

arate spikes coming from different neurons. While
around 100 of them can be in a vicinity of an elec-
trode only few of them are close enough to yield good

Fig. 11. Forbidden spike amplitude areas, each figure shows over
500 superimposed spikes.

spike recordings. Author in [2] states that shape of a
recorded spike depends on:

– physical construction of a cell
– concentration of extracellular Na+ ions
– place in which electrode is relatively close to neu-

ron soma (body)

As none of the above does change during recording
process, one can make assumption that spikes of dif-
ferent shapes come from different neurons. [14] Note,
that these neurons do not have to be of a different
type (see last condition, Section 2.3 and [10]). Cluster-
ing of spike shapes it done threefold. In the first step
samples containing spikes are transformed using level
four Daubechies D1 (Haar) DWT [15]. Second step
selects coefficients best suited for final clustering. Se-
lection is done using modified Kolomogorov-Smirnov
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test (see [16]). Finally clusters are obtained using
k-means method.

Figure 12 shows example of spike discrimination. In
processed recording 554 spikes were found (Fig. 12a).
Spikes were subsequently divided into two shape
classes containing 440 (Fig. 12b) and 114 (Fig. 12c)
spikes.

Distinguished shape classes can be later used ([1],
Chapter 12) for obtaining further neuron specific
statistics that might be useful in STN localization.

2.3.6. Meta signal construction
Creation of the special temporary meta signal is re-

quired because the goal of this method is to obtain
power yielded by spikes only. All background noise
must be removed. Firstly the meta signal is created
with sampling 1 KHz, length equal to this of original
recording and with uniform zero amplitude. Later for
each spike, having time of its occurrence one can ob-
tain corresponding sample number in the meta signal.
Amplitude for such samples is then set to 1 (Dirac’s
delta), finally signal is convoluted with positive part of
cosine. For this cosine function values are mapped in
such a way that part of cosine defined on 〈−π

2 ,
π
2 〉

is mapped onto 11 samples spanning together 10 ms.
These tree steps are shown on Figs 13–15.

2.3.7. Meta signal’s power
When all spikes have their representation in the tem-

porary meta signal, it is transformed using FFT to ob-
tain the general power spectrum. As meta signal is
sampled 1KHz, it is possible to obtain power spec-
trum for frequencies up to 500 Hz. Power of the fre-
quencies above 100Hz is very small and as frequency
increases, it quickly approaches zero. Because of that,
only for frequencies less or equal 100 Hz power spec-
trum is being observed. Power is so calculated for fre-
quency range from 1 Hz to 100 Hz. Assuming that for
a given electrode e the power of a meta signal obtained
from depth d is calculated for a frequency f , it is rep-
resented by pwr(e, d, f).

Summary power for electrode e at depth d is defined
by Eq. (11).

pwrsum(e, d) =

100∑
f=1

pwr(e, d, f) (11)

During DBS surgery set of electrodes traverse se-
lected hemisphere on parallel trajectories towards the
STN . Electrodes record potentials at the same time
and for the same time period. It is safe to compare the

Fig. 12. An example of the spike discrimination: a) 554 spikes,
b) 440 spikes, c) 114 spikes.

power of the signal recorded in these electrodes. Hav-
ing definition for summary power, definition of cumu-
lative power can be introduced. This cumulative power
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Fig. 13. Filtered microelectrode recording (sample rate 24 KHz).

Fig. 14. Meta signal (sample rate 1 KHz).

Fig. 15. Convoluted meta signal (sample rate 1 KHz).

is defined by Eq. (12).

pwrcumul(e, d) =
∑
di≤d

pwrsum(e, di) (12)

2.3.8. Results
For each electrode two types of charts can be pro-

duced. In both cases X axis shows depths on which
recordings has been made, Y axis shows either value
of Eq. (11) or (12). Most useful, allowing for quick
compare, are charts showing summary or cumulative
power together for all electrodes from a given set.

Two such charts are presented on Fig. 16. What
is obvious is that power of the spike based signal
indeed does reflect increased spiking activity in the
STN . Both posterior3 and central electrodes show
on Fig. 16a high increase in the summary power, clear
indication that both of them reached and traversed the

3Most backward, closest to the back of the head.

Fig. 16. Power of the meta signal: a) summary power, b) cumulative
power.

STN at depth ranging roughly from −3000 (−3 mm)
to 1000 (+1 mm). Depth zero is the depth of the STN
estimated on CT/MRI scans.

The anterior4 electrode shows here somewhat dif-
ferent picture. While starting with elevated power, it
shows decrease of it around the depth −3000. Together
with finding from two other electrodes one might as-
sume that this electrode probably did miss the tar-
get. Big increase of power from anterior electrode
that can be observed around the +3000 depth can be
with high certainty explained by its entering the re-
gion called Substantia Nigra. Zone that lies dorsal
to the STN Nucleus is also characterized by spikes

4Most forward, closest to the front of the head.
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Fig. 17. STN recording.

Fig. 18. SNr recording.

with high frequency [1]. While from the results of this
method, these two regions i.e. STN and SNr may
look similar, they have other feature that differentiate
them clearly, as shown on Figs 17 and 18. Other meth-
ods described later in following sections take this into
account.

Method basing on calculation of meta signal can be
used for estimation of the STN ’s localization. Spike
detection criteria ensures that this approach does not
suffer from recoded signal contamination by external
(i.e. electronic, mechanic) noise. If spike becomes too
distorted, it simply would not be qualified. Such noise
can only lower the resulting power. So, while it is pos-
sible that highly contaminated signal from the STN
may have lower power, the other situation – false STN
detection – is not probable.

Results base on spikes and by this on their detec-
tion process. This introduces also some disadvantages.
Mainly there is no guarantee that even in active brain
ares, such as STN , electrode will be placed near active
cell. It has higher probability in STN , where there are
many highly active cells, but still there is no guarantee.
That’s mainly why the summary power can jump be-
tween certain levels on subsequent depths. Such value
jumping can be observed on Fig. 16a at depths be-
tween −3000 and −1000. This can be in some way
amended by using also cumulative power and order-
ing electrodes by value of that power on deepest level.
Electrodes with higher cumulative power more likely
have passed through the STN that others.

In specific situations, this measure can be mislead-
ing. If specific electrode does not reach the STN but

maintains some medium summary power throughout
all depth, its cumulative power can still be the great-
est one. This drawback does not occur in methods pre-
sented in following sections.

Ordering electrodes in such way has also some clini-
cal applications. In some cases, electrode that has been
marked as best, either using summary power or cumu-
lative power simply can not be used. This can be due
to the presence of adverse clinical observations when
such electrode is briefly switched from recording to
stimulation. In such case 2nd best electrode is chosen.

2.4. Artifacts removal

Methods described in later sections do not rely on
spike detection. They base on data extracted from
signal’s amplitude or its power for certain frequency
ranges. Both amplitude and power analysis are highly
affected by signal contamination. Because contaminat-
ing noise causes increase in both power and amplitude,
its removal is especially important to avoid false STN
detections. Most simple solution, used by authors in
[17], just ignores all contaminated data. Here, solution
to salvage uncontaminated portions of such data has
been devised.

Artifacts reside mainly in low frequencies (<375 Hz).
Normally proper for such frequencies DWT coeffi-
cients have uniform and low amplitude. Looking for
coefficients with amplitudes exceeding some thresh-
old should therefore provide information about local-
ization of artifacts in a given recording. Time bound
relation between DWT coefficients and signal samples
allows for artifacts removal.

2.4.1. Removal procedure
If signal reaches maximal allowed amplitude for at

least 0.01 % of its samples it is qualified, contami-
nated, and filtered in a special DWT based way. Six
forward steps of DWT are made. Knowing that signal
has been sampled with 24KHz, each coefficient at kth
level of DWT corresponds to 2k samples in the original
signal.

– set of cA6 coefficients corresponding to original’s
signal in frequency range 0–187Hz

– set of cD6 coefficients corresponding to original’s
signal in frequency range 187–375Hz

According to Eq. (6) σcA and σcD values are calcu-
lated from respectively cA6 and cD6 sets. cA6 is in-
spected for values aj such that |aj | > 3

2σcA. cD6 is
inspected for values dj such that |dj | > 3

2σcD.
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Fig. 19. Raw microelectrode recording.

Fig. 20. Microelectrode recording with artifacts removed.

Samples of the original signal that fall in ranges cor-
responding to found aj and dj are set to 0. Later from
non zero samples of such modified signal the σ is cal-
culated. Finally, signal is hard thresholded with value
6σ.

2.4.2. Results
Figures 19 and 20 shows results of artifacts removal

on 5 s long highly contaminated sample signal. Look-
ing at the raw MER recording it can be perceived that
areas contaminated with artifacts have appearance dis-
tinctly different from the rest of the signal. Comparing
contaminated and filtered signal shows that while arti-
facts have all been removed, remaining portions of the
signal have been left unchanged. Looking at the first
second of the recording one may also find that in some
cases it is even possible to retain some of the orig-
inal signal from the contaminated areas. This would
have not been possible if only amplitude based filtering
methods were applied.

2.5. Analysis of the RMS value

STN is known to produce lots of spikes with high
amplitude but also has loud background noise [18] and
[19]. It can be expected that signals recorded from it
would present elevated Root Mean Square Value. This
parameter is, among others, also used for Bayesian cal-
culations in [17]. Assume, that electrode e at depth d
recorded n samples X = x0, . . . , xn−1 and that RMS
formula is given by Eq. (13).

RMS(e, d, X) =

√∑n−1
i=0 x2

i

n
(13)

Fig. 21. RMS value chart.

RMS approach is much less computationally de-
manding than spike detection and can be easier avail-
able. It still requires calculation of a sum of squares
for all samples from a given recording. Because all
samples contribute to the resulting value, this method
takes into account both background noise and spikes.
If the signal is contaminated by artifacts, the method
may produce falsely high RMS values.

2.5.1. Results
Chart with RMS values for the same trial that was

used in Fig. 16a is shown on Fig. 21.
Because the method is not spike detection depen-

dant, it should not and is not affected by value jump-
ing that was a clear drawback of the described earlier
spike based method. Subsequent RMS values change
in a much smoother and less chaotic way. Spike based
method (Section 2.3.8) estimated that both posterior
and central electrodes might have traversed the STN .
RMS based method as shown on Fig. 21 in a clear
way assesses that posterior electrode is better than
central. Both methods show that anterior electrode
only briefly enters STN most forward tip at −4000
and then stays outside of it. RMS method defines clear
dorsal border of the STN at −4000 with subsequent
increase of the RMS up to depth −1000. On greater
depths the RMS slowly decreases, placing ventral
border around depth of 3000. Such findings and pre-
dicted thickness agree with clinical observations found
in [1].

2.6. Analysis of the percentile value – PRC

Spikes amplitude is by far greater than the back-
ground noise. Because of that one can find an ampli-
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Fig. 22. Amplitude distribution.

tude value below which no spikes are present or above
which spike must rise. This feature is commonly used
in many neurological appliances, for example the 50th
percentile – median of amplitude’s module is used for
both spike detection and artifact removal process. The
approach in which 50th percentile (median) of am-
plitude’s module together with other features is used
for detecting increased neural activity can be found
in [20]. Figure 22 shows amplitude’s module distri-
bution for a STN recorded signal. It is obvious that
high amplitude ranges that comes from spikes lies after
the 95th percentile. Certain percentile value calculated
from module of amplitude can thus be used to estimate
the amount of background neural activity.

2.6.1. Results
Already the 95th percentile shows background ac-

tivity and discards almost all samples from the spikes.
To be however safely independent from any spike ac-
tivity, even lower percentile can be used. In this paper
the 80th percentile is used.

Figure 23 shows how the value of different per-
centiles change with subsequent depths. The STN
area (roughly spanning from −4000 to +3000) char-
acterizes with elevated background activity which is
visible as increased percentile value. While lower per-
centiles (even median) can also be used for such mea-
surement, it must be noted that the lower is the se-
lected percentile, the smaller and less pronounced are
the changes in its value between different brain ar-
eas.

Having selected 80th percentile as a value that can
be used for STN distinguishing an electrode compar-
ison chart can be made. Using the same data set that
was used for creation of Fig. 16a and Fig. 21, we ob-
tained following results (Fig. 24).

Obtained results are in full agreement with those
given by RMS method. Both methods state that the
best electrode is posterior and that STN ranges
roughly between −4000 and +3000. Decrease of per-
centile value is somewhat more steep than in the case

Fig. 23. Percentile value changes.

Fig. 24. 80th percentile changes for electrode set.

of RMS, which identifies the ventral border of the
STN a bit more clearly.

2.7. DWT based analysis of the LFB power

It has been postulated in [21] and [22] that back-
ground neural activity can be divided into two fre-
quency areas. First, an activity in range below 500 Hz
is called Low Frequency Background (LFB). Second
contains frequencies in range 500 Hz to 3000 Hz and
is thus called High Frequency Background (HFB). In
mentioned paper authors use properties of HFB to
pinpoint STN location. Here, in this section a LFB
based method for finding the STN is shown.

As with Quantile based estimator, here too, it is very
important to remove as much of the artifacts as pos-
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Fig. 25. LFB changes for electrode set.

sible. This is due to the fact that most of the power
carried by such artifacts resides in range below 375Hz
that if fully included in the described analysis. Before
the transformation can be made, any spikes detected
during meta signal construction process are removed
from the raw MER recorded signal. Later to ensure
removal of even hight distorted spikes, signal is also
hard thresholded with value of 80th percentile. After
artifacts and spikes have all been removed, similarly
as in the case of cited HFB analysis, signal has to
be transformed first from time to frequency domain.
Here, however instead of FFT the DWT is used. This
time DWT is performed fully, i.e. all available forward
steps are done. As the result, following list of wavelet
coefficient sets is produced: cAn, cDn, cAn−1, . . . ,
cD1. Each set of coefficients corresponds to specific
frequency range. It is possible to select only those sets
for whom their frequency range falls into 0–500 Hz
range. Signal’s power is subsequently calculated from
those sets in a way akin to getting power from FFT
results.

2.7.1. Results
One again the LFB power is calculated for the

same set of electrodes that were used in previous sec-
tions. Results containing LFB power for electrodes
and depths are shown on Fig. 25.

Obtained results are in full agreement with those
given by RMS and percentile methods. All methods
state that best electrode is posterior. RMS and per-
centile based methods estimated STN to be between
−4000 and +3000. LFB based method further refines
this area. STN is to be located between −4000 and
+1000, this yields thickness of about 5 mm which is in

Fig. 26. HFB changes for electrode set.

accordance with brain anatomy [2]. What is especially
worth mentioning is the visible division of STN into
two different parts. Dorsal part spans −4000 to −2000
and has lower power output. Ventral part spans from
−1000 to +1000 and is definitively more active.

This subdivision of STN and greater activity in the
ventral part comes form the fact that STN itself is sub-
divided into smaller subregions. One of them – ven-
tral part of STN plays crucial role in motor neural cir-
cuits and is especially hyperactive in PD patients [1].
Also crossing of LFB amplitudes of anterior and
posterior electrode at depth +2000 might be due to
the border expected here between different brain struc-
tures (STN and SNr5) [1].

2.8. DWT based analysis of the HFB power

In this section a modified version of the HFB cal-
culation described in [21] and [22] is presented. Dif-
ference comes from assumption held also in other sec-
tions. MER recorded signals are highly non stationary
and so better suited for DWT based filtering. All prin-
ciples regarding calculation of HFB and LFB are
the same, only difference lies in frequency range. For
HFB inspected frequency range is between 500 and
3000 Hz.

2.8.1. Results
After calculating HFB for test set of electrodes re-

sults shown on Fig. 26 were obtained.
One again, obtained results are in full agreement

with those given by RMS, percentile and LFB meth-

5SNr – Substantia nigra.



K.A. Ciecierski et al. / Foundations of automatic system for intrasurgical localization of subthalamic nucleus in Parkinson patients 75

ods. There are two notable differences. Firstly, the
posterior electrode is shown as the best one in even
more profound way. Secondly, HFB does not show
subdivisions of STN nucleus.

3. Evaluation and discussion

3.1. Comparison of methods

Summarizing previous sections, five different meth-
ods allowing localization of the STN has been de-
scribed.

– Meta signal based

∗ Does not rely on signal amplitude
∗ Not affected by signal artifacts
∗ Requires high and low pass filtered signal
∗ Relies solely on spike detection and is depen-

dant on electrode being near active cell
∗ No discrimination between STN and SNr

– RMS based

∗ Not affected by electrode placement
∗ Requires high pass filtered signal
∗ Strongly affected by signal artifacts

– Percentile based

∗ Not affected by electrode placement
∗ Requires high pass filtered signal
∗ Strongly affected by signal artifacts
∗ Good discrimination between STN and SNr

– LFB based

∗ Not affected by electrode placement
∗ Does not require prior signal filtering
∗ Affected by signal artifacts

– HFB based

∗ Not affected by electrode placement
∗ Does not require prior signal filtering
∗ Affected by signal artifacts

Each of the above methods have some advantages
and disadvantages.

First of them is not affected by signal artifacts, but
on the other hand it is in some way probability based. It
cannot also distinguish between STN and SNr (both
structures produce high amount of spiking). Because
of that it can not be reliably used for classification of
single recordings. High coefficient value can be due to

electrode being both in STN or SNr. Due to unfavor-
able electrode placement coefficient value can some-
times be low even for the STN area. It can however
be useful when deciding on the electrode level, i.e.
whether electrode passed through STN or not. Predic-
tions based on cumulative power have been proven to
achieve good results [23].
RMS and Percentile (PRC) based methods can be

used for classification of single recordings. Their re-
sults can by however completely wrong if signal con-
tains any artifacts. If the artifacts are present during
first five recordings, the Cbase (see Eq. (2)) can be set
so high that the actual STN location would not be de-
tected at all.
LFB and HFB based methods both rely on fre-

quency analysis. They do not require prior filtering.
In fact no prior filtering should take place. In some
recording systems the frequencies below 500 Hz are
automatically removed. When such recording is ana-
lyzed, the LFB method is of course unusable.

3.2. Recording clustering

Using the RMS, PRC, LFB and HFB meth-
ods, each recording d made by some electrode at given
depth has the set of coefficients described by Eq. (14)

C =
{
cRMS(d), cPRC(d), cLFB(d), cHFB(d)

}
(14)

Having this coefficients, an attempt to obtain mean-
ingful clustering of the recording has been done. Clus-
terings, as described in [24] reflects the natural group-
ing of the objects and are frequently applied in biology
and medicine. Assumption was, that recordings can be
divided into three clusters containing respectively:

α – recordings made outside the STN
β – recordings made in areas near the STN
γ – recordings made inside the STN

Clustering has been done using hierarchical clus-
ter tree with Euclidian distance and minimum vari-
ance algorithm. As input to the clustering procedure
all possible 2, 3 and 4 – element subsets of C has been
tried. This produced

(
4
2

)
+

(
4
3

)
+

(
4
4

)
= 11 cluster-

ings.
Table 1 shows for each chosen subset the percentage

distribution of recordings. Calculated Spearman rank
value for the Cophenetic correlation coefficient is also
included. Regardless of the coefficients subset taken
for clustering, the Spearman rank is greater than 0.86
and in most cases it is above 0.9. This ensures that pro-
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Table 1
Clustering summary

Input coefficients Cluster α size Cluster β size Cluster γ size Spearman rank

RMS, PRC 72.95 % 17.71 % 9.33 % 0.862
RMS, LFB 72.85 % 21.74 % 5.42 % 0.905
RMS, HFB 74.19 % 17.04 % 8.77 % 0.926
PRC, LFB 85.67 % 8.60 % 5.73 % 0.907
PRC, HFB 65.74 % 22.55 % 11.71 % 0.907
LFB, HFB 85.00 % 12.75 % 2.25 % 0.910

PRC, LFB, HFB 82.08 % 12.19 % 5.73 % 0.907
RMS, LFB, HFB 71.59 % 18.17 % 10.25 % 0.911
RMS, PRC, HFB 73.72 % 23.80 % 2.47 % 0.877
RMS, PRC, LFB 85.31 % 9.08 % 5.61 % 0.906

RMS, PRC, LFB, HFB 75.78 % 18.93 % 5.30 % 0.885

Fig. 27. Clustering with RMS and PRC shown of RMS, PRC

plane.

duced clustering was of good quality. Cluster size also
seem to be stable. Having μα = 76.8, μβ = 15.6 and
μγ = 6.6 and σα = 6.3, σβ = 5 and σγ = 2.9 one
can observe that for B and C clusters over 80 % of
observation fall within (μ− σ, μ+ σ) range.

3.2.1. Cluster cross comparison
On the following pictures some of the more interest-

ing clustering results are shown. Especially interesting
are the results obtained when clustering was made us-
ing one subset of coefficients and clustering results are
also shown using another subset.

Figure 27 shows results of the clustering done us-
ing only coefficients cRMS and cPRC . One can clearly
observe that data set has been divided into three sec-
tions.

Cluster α – very dense and numerous, containing
recordings assumed to be made outside of the STN
(around 7000 of recordings).

Fig. 28. Clustering with RMS and PRC shown of LFB, HFB
plane.

Cluster β – much less dense, containing record-
ings assumed to be made near the STN (while having
area similar to cluster A, it contains only around 1700
recordings).

Cluster γ – sparse, containing recordings that are
assumed to be coming from the STN (contains only
about 900 recordings).

Figure 28 shows results of the same clustering that
is shown on Fig. 27. It shows however a recording seen
from the point of view of other two coefficients (cLFB

and cHFB). One can plainly see the cluster α that con-
tains recordings made outside STN . As expected, the
recording from that cluster have also small cLFB and
cHFB values. Also, as expected, recordings from clus-
ter γ are characterized by largest in population values
of cLFB and cHFB . This is a clear evidence that ob-
tained results are stable and regardless of chosen coef-
ficient subset recordings are divided in a similar way.
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Table 2
μ fraction of common elements between clusters

α β γ

α 0.959 0.041 <0.0003
β 0.181 0.709 0.110
γ 0.003 0.211 0.785

Table 3
σ fraction of common elements between clusters

α β γ

α 0.053 0.053 0.001
β 0.233 0.228 0.150
γ 0.011 0.239 0.242

Taking C1 ⊆ C and C2 ⊆ C (see Eq. (14)) the
resulting α1 and α2 clusters in worst case scenario
have over 77 % common elements. As it can be seen
in Table 1, results produced by clustering on PRC and
HFB differ considerably from other results. Remov-
ing from consideration these clusterings raised frac-
tion of intersection to 84 %. Now fraction of elements
common in α clusters has mean μ = 0.959 with
σ = 0.053. Fraction of elements common in β clusters
has mean μ = 0.709 with σ = 0.228. Fraction of ele-
ments common in γ clusters has mean μ = 0.785 with
σ = 0.242.

Results in Tables 2 and 3 show good clustering sta-
bility. On average only 4.1 % of recordings classi-
fied by one clustering to cluster α could be placed by
another clustering into β. Even less of them, around
0.03 % can fall info γ cluster. Also the other way
round, only around 1.1 % of recordings classified by
one clustering to cluster γ could be placed by an-
other clustering into α. This allows one to say with
good certainty that obtained results are comparable be-
tween clusterings. Recording that has been assigned
with cluster label α is much, much less likely to
come from the STN than another one with cluster
label β – even if labels come from different cluster-
ings.

3.3. Review of clustering results

Let us introduce ranking between clusters. As our
goal is to find the STN , the most natural order is that
γ is favorable to β which is also favorable to α. Having
done that, assume that for given recording, best clus-
ter is the most favorable cluster among all assignments
made by different clusterings.

Table 4
Cluster assignments for Anterior electrode

depth −10 −9 −8 −7 −6 −5 −4 −3

best cluster α α α α α α β α

depth −2 −1 0 +1 +2 +3 +4 +5

best cluster β β α 2 β β β α

Table 5
Cluster assignments for Central electrode

depth −10 −9 −8 −7 −6 −5 −4 −3

best cluster α α α α α α β β

depth −2 −1 0 +1 +2 +3 +4 +5

best best cluster β γ γ β β β α α

Table 6
Cluster assignments for Posterior electrode

depth −10 −9 −8 −7 −6 −5 −4 −3

best cluster α α α α α α β γ

depth −2 −1 0 +1 +2 +3 +4 +5

best cluster γ γ γ γ α α α α

3.3.1. Case one
Let us take the example pass of electrodes that was

shown in Sections 2.5, 2.6, 2.7 and 2.8. Figures 29a,
29b, 29c and 29d are scaled down versions taken from
above sections and are placed here for easier compar-
ison with clustering results. Each electrode produced
16 recordings (from depths ranging −10000 μm to
5000 μm).

For compactness, depths in Tables 4, 5 and 6 are
shown in mm not in μm. Table 4 shows how recordings
made by Anterior electrode were classified. Table 5
show how recordings made by Central electrode
were classified. Table 6 show how recordings made by
Posterior electrode were classified.
Anterior electrode has no recordings labeled as

γ and largest continuous β sequence contains three
depths.
Central electrode has two subsequent depth la-

beled as γ, they together with adjacent β recordings
form 8 element sequence.
Posterior electrode has five subsequent depth la-

beled as γ, they together with adjacent β recordings
form 6 element sequence.

Basing on obtained results, as the best electrode we
select the Posterior one – it contains largest sequence
of γ labeled recordings. As Anterior electrodes pro-
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Fig. 29. Coefficients for selected pass of electrodes.

duced no recordings labeled as γ, the 2nd best would
be of course the Central electrode.

3.3.2. Case two
The following example has been specially chosen

to show situation when STN is visible on calculated
results, but relative coefficients values are not so high.

Looking at Fig. 30 there are certain similarities to
Fig. 29a, there is however a significant difference.
RMS amplitude in this case fits for all electrodes be-
neath value 1.8 while in previous one for some elec-
trodes it was around 2.75. Of course amplitudes in both
cases (see Section 2.2) are normalized according to av-
erage from first five depths. Reason for such a big –
around 50 % – difference in RMS value can be var-

ious. It can be both electronically and physiologically
based. It is for example possible, that in a subject case
the STN nucleus was simply less active then in the
first patient.

On Fig. 31 too, similar as with RMS values, differ-
ences can be observed. Normalized amplitude of PRC
coefficient in the first case was around 2.75 while for
second patient it reached only to around 1.7.

In the case of LFB differences are even more pro-
found, normalized LFB values for 1st patient reached
value of 10. For 2nd case LFB amplitude is at all
depths below value of 3. Comparing the larger version
of Fig. 29c (Fig. 25) with Fig. 32 it becomes obvious
that even the worst electrode from the first patient has
LFB at some depth values larger than 3. This poses
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Fig. 30. RMS coefficient.

Fig. 31. PRC coefficient.

an issue that has to be addressed. The same value of
a given coefficient in the first patient was clearly too
low to indicate STN while being large enough in the
second.

HFB values also exhibit the same issue. Normal-
ized HFB values for the first patient reached almost
the value of 8 while in the second patient they are all
contained below value of 4.

Such big differences must have some implications
in clustering results. And, yes, indeed it has. As seen in
Tables 7, 8 and 9, none of the recordings has been as-
signed the γ label. Such situation is not a frequent one.
In reviewed 163 trials (each trial represents a single
pass of electrode array through a brain hemisphere),
only in 24 (14.7 %) of them there were no electrodes
that produced at least one recording labeled as γ. In ab-

Fig. 32. LFB coefficient.

Fig. 33. HFB coefficient.

Table 7
Cluster assignments for Anterior electrode

depth −10 −9 −8 −7 −6 −5 −4 −3

best cluster α α α α α α α α

depth −2 −1 0 +1 +2 +3 +4 +5

best cluster β β β β β α β 1

sence of γ recordings, ones labeled as β must be used.
Table 7 shows how recordings made by Anterior elec-
trode were classified. Table 8 shows how recordings
made by Central electrode were classified. Table 9
show how recordings made by Posterior electrode
were classified.
Anterior electrode contains 5 elements long se-

quence of recordings labeled as β.
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Table 8
Cluster assignments for Central electrode

depth −10 −9 −8 −7 −6 −5 −4 −3

best cluster α α α α α α α α

depth −2 −1 0 +1 +2 +3 +4 +5

best cluster α α α α α α α α

Table 9
Cluster assignments for Medial electrode

depth −10 −9 −8 −7 −6 −5 −4 −3

best cluster α α α α α β α α

depth −2 −1 0 +1 +2 +3 +4 +5

best cluster α α β β α α β α

Central electrode produced no recordings labeled
as β.

Medial electrode has only 2 element long sequence
of recordings labeled as β.

Basing on obtained results, as the best electrode
selected was the Anterior one – it contains largest
sequence of β labeled recordings. As Central elec-
trodes produced no recordings labeled as γ, the 2nd
best would be the Medial electrode.

3.4. Electrode ordering

Having labeled the recordings, we can now of-
fer a way to rank them as to how good did they
reached/passed through the STN . For this, we define
three measures defined for an electrode:

– Mγ1 – count of recordings labeled as γ.
– Mγ2 – length of the longest sequence of record-

ings labeled as γ.
– Mγβ – length of the longest sequence of record-

ings labeled as γ or β.

Electrodes are then ordered as follows: firstly in de-
scending order according to Mγ value, on the second
level descending according to Mγβ value and finally,
descending according to Mβ .

Table 10 contains example of such ranking using de-
fined measures.

Rank finds its confirmation also in coefficients val-
ues. Figure 34 shows value of LFB for electrodes de-
scribed in Table 10.

3.4.1. Cluster based vs meta power ordering
Comparing electrode rankings produced by analy-

sis of meta power and by coefficient clustering shows

Table 10
Electrode rank example

Electrode Recording clusters Mγ1 Mγ2 Mγβ

Anterior ααααααααβγβγββββ 2 1 8
Posterior ααααααβββββγββαβ 1 1 8
Medial αααααααββγββαβαα 1 1 5
Central αααααααβββββββββ 0 0 9

Fig. 34. LFB coefficient.

that although results are in some way similar there
are also notable differences. When comparing ranks
of 550 electrodes, it emerged that in 415 (75.45 %)
cases rank has not changed or changed by one posi-
tion.

There were 326 electrodes with 1st or 2nd rank as-
signed by meta power method. 338 electrodes have 1st
or 2nd rank assigned by cluster based method. Inter-
section of both sets give electrodes that have been se-
lected as best or 2nd best by each approach. This re-
sulting set contains 217 electrodes, it is 66 % when
comparing to meta power results and 64 % when com-
paring to cluster method results. Differences in both
sets come from issue explained in Section 2.3.8. Fig-
ure 16a shows summary meta power for certain trial of
electrodes. It is evident that two electrodes Posterior
and Central have elevated summary power at depths
around −2000. Third electrode – Anterior – how-
ever has medium power throughout almost all of pas-
sage and as the result its cumulative power is the great-
est one. So, the ordering of electrodes produced by
meta power is Anterior, Posterior, Central. Order
produced by clustering is free from that influence and
is Posterior, Central, Anterior which is of course
more true.
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4. Conclusion

There are several ways in which given recordings
can be classified as coming from STN or not. They all
have their advantages and disadvantages. Spike based
methods like meta power, intra spike histogram[1] or
simple spike count must rely on spike detection. This
can be difficult due to the nature of MER recorded sig-
nal. Low frequency components or artifacts can lead
to incomplete detection of spikes. On another hand –
as shown in Section 2.3.8 – STN is not the only area
characterized by high spiking activity. This could led
to both false negative and false positive detections of
the STN .

Other classes of methods, especially RMS, PRC,
LFB and HFB described in this paper do not directly
rely on spike detection. They of course require some
signal preprocessing. Especially essential is artifact re-
moval. Each of them helps to find the STN location
using different approach, still, as pointed out in Sec-
tion 3.2.1 they greatly agree in their assessments. Hi-
erarchical clusterings that base on the described meth-
ods proved to be an effective method for STN dis-
crimination. Obtained results are more stable, accurate
and less probability dependant then those basing on
spikes. This all, proves that it is possible to construct
autonomic and automatic decisive support system for
STN detection. It’s because low specificity might lead
to false-positive result. It might identify a wrong area
of a brain as a good for electrode implantation. Such
erroneous placement of electrode might lead to tragic
disturbance of patient’s emotions [1].
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