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Abstract. Deep brain stimulation (DBS) of the subthalamic nucleus
(STN) is effective treatment of Parkinson disease. Because the STN is
small (9 X 7 X 4 mm) and it is not well visible using conventional imaging
techniques, multi-microelectrode recordings are used to ensure accurate
detection of the STN borders. Commonly used discriminations which
microelectrode’s signal relates to the activity of the STN are signal qual-
ity and neurologist’s experience dependent. The purpose of this paper is
to determine the STN coordinates in a more objective way. We present
analysis of the neurological signals acquired during DBS surgeries. The
purpose of our method is to discover which one of the scanning micro-
electrodes reaches the target area guaranteeing a most successful surgery.
Signals acquired from microelectrodes are first filtered. Subsequently the
spikes are detected and classified. After that, new signal is reconstructed
from spikes. This signal’s power is then calculated by means of FFT.
Finally cumulative sum of the signal’s power is used to choose a proper
electrode.
The ultimate goal of our research is to build a decision support system for
the DBS surgery. A successful strategy showing which of the recording
micoelectrodes should be replaced by the DBS electrode is probably the
most difficult and challenging.

Keywords: Parkinson’s Disease, DBS, STN, Wavelet, Filtering, PCA, FFT,
Spike detection, Spike discrimination, Spike clustering

Introduction

The Parkinson’s disease (PD) is a chronic, progressive movement disorder that
affects the lives of at least one million patients across the United States and
the number of PD patient is constantly increasing as effect of the population.
The characteristic motor symptoms of PD, predominantly due to progressive
degeneration of nigral dopaminergic neurons, are initially subtle and impact
purposeful movement, and are often difficult to diagnose and to differentiate
from other age related symptoms. Among it’s symptoms there is an impairment
of motor skills: tremor, stiffness and slowness of voluntary movements.



Subthalamic nucleus (STN) deep brain stimulation (DBS) has become the
standard treatment for patients with advanced Parkinson’s disease (PD) who
have intolerable drug-induced side effects or motor complications after the long-
term use of dopaminergic drugs. In this surgical procedure microelectrodes are
inserted into brain on the track towards estimated from the MRI STN posi-
tion. When they reach the destination, signal from them is being analyzed and
upon the result of this analysis the trajectory of one of them is later used for
implantation of the permanent DBS electrode. When the permanent electrode
is activated, it disrupts abnormal activity of the STN and the impairment of
motor skills to some degree lessens. To minimize the collateral damage to the
brain tissue, it is imperative to use as few probing electrodes as possible, and to
find the correct trajectory in most precise way.

1 Initial signal analysis

1.1 Removal of low frequency components

Recorded signal has to be initially processed before further analysis can begin.
Often the signal is contaminated with low frequency components. This low fre-
quencies comes both from biological and non-biological sources. One source in
particular is worth mentioning - it’s the frequency of power grid 50 Hz in Europe
and 60 Hz in US. Below, a raw signal is shown (see Fig. 1) that was actually
recorded within patients brain. In this recording one can clearly see that signal
has strong component of low frequencies. This low frequencies affects the ampli-
tude of the signal and the same it is very difficult to make any amplitude-based
analysis. This is why signal needs be filtered. All frequencies below 375 Hz and
above 3000 Hz were removed. and the resulting signal (see Fig. 2) is much more
suited for further use.

Fig. 1. Intraoperative 1s microelectrode recording from the sunthalamic area. The low
frequency oscillations are clearly visible. One can also clearly see 10 spikes having
amplitude much larger than the rest of the signal, but there are many other spikes
with smaller amplitudes.



Fig. 2. The same 1s signal as in Fig. 1. but with frequencies below 375 Hz removed.
One can still clearly see 10 spikes.

1.2 Spike shape retention

The process of high band filtering absolutely must retain the spikes that were ob-
served in the raw signal. If only the presence of the spikes must be preserved, one
can use FFT filtering. Using FFT is not suitable when not only occurrence but
also the shape of the spikes should be preserved. This is because FFT strongly
interferes with the shape of the spikes (see Fig. 3). This is why Daubechies D4
wavelet filtering was chosen as the filtering method. This idea of wavelet decom-
position, filtering and reconstruction of DBS recorded signal has been described
in [4]

(a) Original shape of unfiltered
spikes

(b) Distorted shapes present in
FFT filtered signal.

Fig. 3. Comparison of spike shapes in raw (a) and FFT filtered (b) signal.

2 Spike detection

As it was stated in [2], it is possible to detect spikes occurring in cells within
radius of 50 µm from the electrode’s recording tip. Still, this small area may
contain around 100 neuronal cells. Recorded spikes from such area with one
microelectrode may have different widths, shapes and amplitudes. Cells that are
close to electrode will be recorded with a higher amplitudes then those being
distal. Distance between electrode and soma can also have an influence on the



width of the recorded spike [3]. The greater the distance, the wider become
recorded spikes from the same cell. All above makes the task of detecting spikes
and discriminating them from the noise even more difficult. Two approaches to
spike detection were considered:

2.1 Derivative approach

In this approach spikes detection bases on the slope of their amplitude. If the first
derivative is below and then above some given thresholds during some consistent
period of time then it is assumed that spike might have occurred. Assuming that
amplitude over time is represented by f(t), it’s derivative as f ′(t), lower threshold
as dl and upper threshold as du. Necessary condition for spike to occur around
time t0 is shown on equation 1. Equations 2 and 3 guarantee that at some points
the pitch of descent and ascent are greater then appropriate thresholds.

∃tb < t0 < te (∀(tb < t < t0)f ′(t) < 0 and ∀(t0 ≤ t < te)f
′(t) ≥ 0) (1)

∃(tb < tl < t0)f ′(tl) < dl (2)

∃(t0 < tu < te)f
′(tu) > du (3)

It must also be mentioned that spikes with polarity negative to described above
do exist and have to be detected in adequate, similar way.

2.2 Amplitude approach

Assuming that low frequency components have been already filtered out from
the signal, one can attempt to detect spikes using amplitude analysis. In [5] it is
postulated to use a specific amplitude threshold for spike detection. Threshold
is there given by value Vthr (see equation 4) with αthr ∈ 〈4.0, 5.0〉. In this work
different αthr are begin used. During spike detection, program checks for spikes
with values 5.0, 4.9, . . . , 4.0. Spike is assumed to exist when amplitude is lower
then −Vthr or higher then Vthr. If for some recording at given αthr value, at
least 200 spikes are found then it is accepted. If not, lower values are tested. If
at value of 4.0 less then 30 spikes are found it is assumed that no representative
spikes have been found. Advantage of this approach over the previous one is
that in this case, the threshold can be calculated automatically. This allows the
process of spike detection to be done in unsupervised - automatic way.

Vthr = αthr σn where σn =
1

0.6745
median(|x1|, . . . , |xn|) (4)

2.3 Comparison of Approaches

Because of the ability of automatic spike detection, the amplitude approach was
chosen. Regardless which approach i selected, some fine tuning is still necessary.
This fine tuning is defined as zones of forbidden amplitude and is shown in red



(see Fig. 4). In case of down− up spikes (see Fig. 4(a)) the −Vthr amplitude is
shown as green line. Assuming that amplitude is below −Vthr at time t0 then
spike occurs between t0 − 0.5 ms and t0 + 1.1 ms if fulfilled are conditions (5)
· · · (8). In case of up − down spikes (see Fig. 4(b)) the green line denotes Vthr
amplitude level. Conditions (5) · · · (8) must be modified in this case to reflect
reversed amplitude.

∀(t0 − 0.5 ms < t < t0 − 0.4 ms) f(t) > −Vthr
2

(5)

∀(t0 + 0.4 ms < t < t0 + 1.1 ms) f(t) > −Vthr
2

(6)

∀(t0 − 0.5 ms < t < t0 − 0.3 ms) f(t) <
Vthr

2
(7)

∀(t0 + 1.0 ms < t < t0 + 1.1 ms) f(t) <
Vthr

2
(8)

(a) Down-Up spikes (b) Up-Down spikes

Fig. 4. Forbidden spike amplitude areas: in (a) 264 spikes, in (b) 266 spikes

3 Spike clustering

As mentioned in section 2, scanning electrode can register spikes coming from
about 100 neurons. Not all of them are of the same cell type. Different neurons
types/classes have different spike shapes. While it seams that shape alone is
not sufficient to determine location of the electrode in patient’s brain, it still
unsubtly carries information that can be used in further analysis.



3.1 Clustering using PCA over spike amplitude

Archer et. al. in [5] use Principal Component Analysis to obtain principal compo-
nent vectors and then use mean of the first few to obtain dominant spike shape.
Here a modified PCA approach has been applied. Knowing that all spikes from
given recording are 1.6 ms wide (see section 2.3) one knows that they are de-
scribed using the same number of samples. It is so possible to build matrix
containing all detected spikes with each row containing single spike. After the
PCA is preformed the first ten most important principal component vectors are
clustered using k − means method. Resulting cluster gives good spike shape
discrimination.

3.2 Clustering using PCA over wavelet decomposition

To the shape of the spike, lower frequency components contributes the most.
Comparing the wavelet transforms of different spikes also shows that the lower
frequencies are most differentiating. Because of that, to enhance the effectiveness
of the clustering, a subset of wavelet transform coefficients is used as the input
to the PCA. Following approach used in [6], each spike is transformed using the
4levelHaar, wavelet transform. Matrix containing row by row wavelet transfor-
mations of all spikes is then constructed. It is obvious that not all columns are
needed for clustering. Some of them (esp. those related to higher frequencies)
are redundand. Proper columns are chosen using modified Kolomogorov-Smirnov
test (see [6]). The outcome of the PCA is used to obtain clusters in the same
way as in (3.1)

3.3 Clustering summary

Both types of clustering produce good spike shape discrimination. In the (3.1)
approach all spike data are being used as an input into PCA. This sometimes
produces additional clusters. This clusters represent shapes that are similar to
shapes yielded by other clusters and are different mainly in higher frequencies.
Table 1 shows comparison of clustering results run on 96 recordings. For each
clustering type it is shown how many recordings produced given number of dif-
ferent clusters/shapes. In both clustering approaches most recordings produced
only 2 different shapes (73 recordings for amplitude based, and 62 recordings for
wavelet based). Only in 9 and 15 respectfully recordings single shape class was
detected. Fig. 5 shows example of spike discrimination. In processed recording
312 spikes were found (Fig. 5(a)). Spikes were subsequently divided into two
shape classes containing 167 (Fig. 5(b)) and 125 (Fig. 5(c)) spikes.

4 Power spectrum analysis

The area of the brain in which electrode should be inserted (STN) is character-
ized by high neuronal activity. This activity should be reflected in power of the



Table 1. Cluster size occurrence

Shapes
detected

Amplitude
based

Wavelet
based

1 9 15
2 73 62
3 11 17
4 2 2
5 1 0

(a) All spikes (b) Class A spikes (c) Class B spikes

Fig. 5. An example of the spike discrimination: a) 312 spikes, b) 167 spikes, c)125
spikes.

signal. The raw recorded signal is highly contaminated with noise from neurons
that are near the electrode. In [7], authors basing upon spikes occurrence in
original signal create new one to conduct the synchronization analysis. In this
paper similar procedure is used to create the temporary signal from the spikes
and then analyze it’s power using FFT.

4.1 Creating the temporary signal

The temporary signal has the same length as the original one. Its sample rate is 1
KHz. This sample rate according to Nyquist-Shannon sampling law ensures that
frequencies up to 500Hz will be well described. Signal is created with constant
amplitude 0, then at points that correspond to spike occurrences, a part of cosine
function is inserted. Cosine function values are inserted in such a way that if the
spike occurred at time t0 then a part of cosine defined on

〈
−π2 ,

π
2

〉
is mapped

onto < t0 − 5ms, t0 + 5ms >. Mapping is done in additive way - if two or more
spike induced cosines overlap they amplitudes summarize.

4.2 Extracting the power spectrum

When all spikes have their representation in the temporary signal, it is trans-
formed using FFT to obtain the power spectrum. It is possible to obtain power
spectrum for frequencies up to 500Hz. Power of the frequencies above 100Hz is
very small and as frequency increases it quickly approaches zero. Because of that,



only for frequencies less or equal 100Hz power spectrum is being observed, power
of higher frequencies is discarded. Power for frequencies below 1Hz is also not
taken into account, it comes from all spikes being separated from each other by
1s or more and not STN specific. Summarizing, power is calculated for frequency
range from 1Hz to 100Hz with resolution 1Hz.

4.3 Power analysis

In DBS surgery several electrodes traverse selected hemisphere on parallel tra-
jectories towards the STN. Electrodes record potentials at the same time and
for the same time period. It is safe to compare the power of the signal recorded
in these electrodes. Assume that for a given electrode e the power of a signal
recorded at depth d, calculated for frequency f is represented by pwr (e, d, f).
This cumulative power can be defined as shown by equation (9)

pwrcumul (electrode, depth) =
∑

d≤depth

100∑
f=1

pwr(electrode, d, f) (9)

4.4 Usefulness of cumulative power

Cumulative power have some interesting properties that can be useful to neuro-
surgeons and neurologists.

Test data. The dataset contain recordings taken from 11 DBS surgeries. During
surgeries there were 20 sets of the microelectrode recordings. Each set contained
from 2 up to 4 microelectrodes; total 60 probing microelectrodes were used.
In all sets, neurologists have selected one of the electrodes as trajectory for
implantation of final, stimulating electrode.

Selecting electrode that will reach the STN with good accuracy. When
the microelectrodes reach the estimated from MRI depth at which STN should
be found, it is time to pick one of them as a trajectory for the final stimulating
electrode. If at this final depth, a cumulative power is calculated for each of the
scanning electrodes, then obtained values can be used to determine position of
the DBS electrodes. Microelectrodes with higher value of cumulative power are
far more likely to be the ones that actually have reached the STN. The cumu-
lative power has been calculated for all (60) microelectrodes from our dataset.
If highest cumulative power was used as the criterium for selecting electrode
from a given probing set, then 13 out of 20 good electrodes would be correctly
selected. Specificity is 0.85, sensitivity is 0.62. See Table 2(a). In four sets, the
electrode chosen by neurologist has 2nd highest cumulative value. If highest or
2nd highest cumulative power were used as criterium for selecting electrodes
from a given probing set, then 17 out of 20 good electrodes would be correctly
selected. Specificity is 0.85, sensitivity is 0.71. See Table 2(b).



(a)

positive negative %

true 13 33 76.7%
false 6 8 23.3%

(b)

positive negative %

true 17 33 83.3%
false 6 4 16.7%

Table 2. Classification results

Predicting if electrodes are likely to reach the STN or not. It is desirable
to know, as quickly as possible, if a given micoelectrode is going to reach the
STN or not. If we know that a given microelectrode has minimal chance to
reach the target, a neurosurgeon would not have to advance it deeper in the
brain decreasing this way chances for additional side effects. Fig. 6 shows that
already at the depth -1000 (1mm above estimated target position) one may
suspect that Anterior microelectrode might be the best one (highest steepness)
and that Lateral microelectrode will most probably miss the target.

Fig. 6. Changes in cumulative power of signals simultaneously recorded from three
microelectrodes over the depth

Pinpointing depth of the microelectrode which reached the STN. In
some cases only one probing electrode is inserted into patient’s brain. It is then
impossible to compare it with other data. Still the cumulative power gives us
some information regarding whether and when electrode reached the STN. Fig.
7 shows that from depth of -5, the power of the signal steeply increases. With
hight probability this is the depth about which STN has been reached.



Fig. 7. Changes in cumulative power signal recorded from single microelectrode over
the depth

5 Conclusions

We propose that the spike shape extraction, classification and their cumulative
power spectra are new tools that might help to determine the exact STN coordi-
nates. Our decision algorithm will increase surgery safety and improve precision
of the STN stimulation that will make the DBS therapy more efficient.
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